• Title/Summary/Keyword: Satellite SAR Image

Search Result 160, Processing Time 0.025 seconds

A Study on Geometric Correction Method for RADARSAT-1 SAR Satellite Images Acquired by Same Satellite Orbit (동일궤도 다중 RADARSAT-1 SAR 위성영상의 기하보정방법에 관한 연구)

  • Song, Yeong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.605-612
    • /
    • 2010
  • Numberous satellites have monitored the Earth in order to detect changes in a large area. These satellites provide orbit information such as ephemeris data, RPC coefficients and etc. besides image data. If we can use such orbit data afforded by satellite, we can reduce the number of control point for geo-referencing. This paper shows the efficient geometric correction method of strip-satellite RADARSAT-l SAR images acquired by same orbit using ephemeris data, single control point and virtual control points. For accuracy analysis of proposed method, this paper compared the image geometrically corrected by the proposed method to the image corrected by ERDAS Imagine.

The high accurate monitoring technique of land deformation by using satellite image - PSInSAR -

  • Mizuno Toshimi;Kuzuoka Shigeki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.305-312
    • /
    • 2003
  • Remote sensing can provide invisible information in addition to acquire wide-view image data from space. Synthetic Aperture Radar (SAR) transmits microwave to the earth from a satellite and collects the reflected echo from the surface. Interferometric processing of SAR data can detect the subtle land deformation. The information of the surface movement by SAR is useful to monitor the volcanic activity, extended subsidence of urbanized area and the prediction of the earthquake caused by crustal deformation, and it complements the conventional levelling and GPS technique. PSInSAR (Permanent Scatterers Interferometric SAR) is one of interferometric techniques to be applied to practical projects in Japan. In this paper, the projects of land deformation monitoring are shown after the explanations of the PSInSAR principle. Tokai earthquake risk assessment is the first example. PSInSAR detects the subduction of crustal deformation of the adjacent area of new assumed epicenter region of the Tokai Earthquake. The extended subsidence of the urbanized area was implemented by using Japanese satellite data i.e. JERS that has so much data the surrounding of Japan as the archive. We examine the relationship between the geological structure and settlement at Nohbi basin including Nagoya city.

  • PDF

A study on the estimation of damage by storm and flood using satellite imagery (풍수해 피해규모 파악을 위한 위성영상의 활용방안 연구)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Lee, Jung-Bin;Jin, Kyung-Hyuk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.111-114
    • /
    • 2007
  • One of future remote sensing techniques for the estimation of damage by storm and flood is the extraction of water area, which could be the basis of measuring the damage by storm and flood and estimate restoration cost. This paper introduces an approach to damage estimation using satellite Image. The project site was Ansung area and a set of Radarsat-1 SAR image at 6.25m resolution was used for the test. Authors investigated methods of SAR image processing such as shadow-effect removal, orthorectification of SAR image and calculation of damage area by flood. Consequetly, this study showed that technique improvement of image processing and the best of result for extracting water area. Also, found the new possibility of damage estimation using satellite image.

  • PDF

A Study on Evaluation of Jamming Performance on SAR Satellite (SAR 위성에 대한 재밍 효과 분석)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae;Kwak, Hyun-Kyu;Shin, Wook-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.252-257
    • /
    • 2010
  • SAR has pulse compression gain through the process including range and azimuth. Efficient jammers against the SAR with simulated elements are evaluated in the view of power and SAR image. In this paper, J/S is analysed for SAR with RF propagation equation firstly. Several jamming signals on SAR signal are made into SAR image through pulse compression process. Objective jamming performance is evaluated using euclidean distance.

ANALYSIS OF OCEAN WAVE BY AIRBORNE PI-SAR X-BAND IMAGES

  • Yang, Chan-Su;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.240-242
    • /
    • 2008
  • In the present article, we analyze airborne Pi-SAR (Polarimetric-Interferometric SAR) X-band images of ocean waves around the Miyake Island at approximately 180 km south from Tokyo, Japan. Two images of a same scene were produced at approximately 40 min. interval from two directions at right angles. One image shows dominant range travelling waves, but the other image shows a different wave pattern. This difference can be caused by the different image modulations of RCS and velocity bunching. We have estimated the dominant wavelength from the image of range waves, and from the wave phase velocity computed from the dispersion relation (though no wave height data were available), the image intensity is computed by using the velocity bunching model. The comparison of the result with the second image at right angle strongly suggests the evidence of velocity bunching.

  • PDF

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

Modelling of Image Acquisition Scenario and Verification of Mission Planning Algorithm for SAR Satellite (SAR위성의 영상획득 시나리오 모델링 및 임무설계 알고리즘 성능검증)

  • Shin, Hohyun;Kim, Jongpil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.590-598
    • /
    • 2019
  • Today, satellites are widely used in many fields like communication and image recoding. The image acquired by satellites contains variety information of wide region. Therefore, they are used for agriculture, resource exploitation and management, and military purpose. The satellite is required to acquire images effectively in a given time period. Because the period that satellites can acquire images is very restrictive. In this study, the modeling of processing time and attitude maneuvering for satellite image acquisition is performed. From this modeling, mission planning algorithm using heuristic evaluation function is suggested and performance of the proposed algorithm is verified by numerical simulation.

Spaceborne SAR System Design and Performance Analysis (위성 영상 레이다(SAR)시스템 설계와 성능분석)

  • Gwak, Yeong-Gil;Jeong, Cheol-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.26-39
    • /
    • 2006
  • A synthetic aperture radar (SAR) system can provide all-weather, day and night imaging capability, and thus, is very useful in surveillance for both civil and military applications. In this paper, the X-band spaceborne SAR system design procedure is introduced with the key design parameters for mission and system requirements characterized by the small satellite platform. The SAR imaging mode design technique is presented, and the design results are analyzed for standard mode performance evaluation. In line with the system requirements, the X-band SAR payload and ground reception/processing sub-systems are presented with the key design results and image applications examples. The designed small satellite SAR system shows the wide range of imaging capability, and proves to be an effective surveillance system in light-weight, high-performance and cost-effective points of view.

  • PDF

AQUACULTURE FACILITIES DETECTION FROM SAR AND OPTIC IMAGES

  • Yang, Chan-Su;Yeom, Gi-Ho;Cha, Young-Jin;Park, Dong-Uk
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.320-323
    • /
    • 2008
  • This study attempts to establish a system extracting and monitoring cultural grounds of seaweeds (lavers, brown seaweeds and seaweed fulvescens) and abalone on the basis of both KOMPSAT-2 and Terrasar-X data. The study areas are located in the northwest and southwest coast of South Korea, famous for coastal cultural grounds. The northwest site is in a high tidal range area (on the average, 6.1 min Asan Bay) and has laver cultural grounds for the most. An semi-automatic detection system of laver facilities is described and assessed for spacebome optic images. On the other hand, the southwest cost is most famous for seaweeds. Aquaculture facilities, which cover extensive portions of this area, can be subdivided into three major groups: brown seaweeds, capsosiphon fulvescens and abalone farms. The study is based on interpretation of optic and SAR satellite data and a detailed image analysis procedure is described here. On May 25 and June 2, 2008 the TerraSAR-X radar satellite took some images of the area. SAR data are unique for mapping those farms. In case of abalone farms, the backscatters from surrounding dykes allows for recognition and separation of abalone ponds from all other water-covered surfaces. But identification of seaweeds such as laver, brown seaweeds and seaweed fulvescens depends on the dampening effect due to the presence of the facilities and is a complex task because objects that resemble seaweeds frequently occur, particularly in low wind or tidal conditions. Lastly, fusion of SAR and optic spatial images is tested to enhance the detection of aquaculture facilities by using the panchromatic image with spatial resolution 1 meter and the corresponding multi-spectral, with spatial resolution 4 meters and 4 spectrum bands, from KOMPSAT-2. The mapping accuracy achieved for farms will be estimated and discussed after field verification of preliminary results.

  • PDF

Analysis of Flood Inundation using WMS and RADARSAT SAR Image (WMS와 RADARSAT SAR 영상을 이용한 유역 침수구역 분석)

  • Kim, Kyung-Tak;Kim, Joo-Hun;Park, Jung-Sool;Byun, In-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.1-12
    • /
    • 2007
  • This study was conducted in order to analyze a flooded area by the overflow of a stream using hydrological and hydraulic models and to estimate the utility of the SAR satellite image by comparing a protected lowland inundation area with a past inundation area map. The research area selected for this study is Sapkyocheon, which was flooded in August 1999. The flood stage was analyzed to select an inundation area by applying flood events in August 1999. By importing analyzed flood stage data into TIN data of WMS, the inundation area of a protected lowland was selected and then compared with an flood hazard map of WAMIS. An inundation area is selected by the SAR satellite image in comparing the image of August 4, 1999 (inundation time) with the image of September 8, 2002 (after inundation). The method of selecting an inundation area with the hydraulic model of HEC-RAS can be used to select an inundation area of external overflow, but it has the limit of selecting an inundation area concerning the internal drainage. The method of using the SAR satellite image can complement the limit of an inundation area of an internal drainage but accuracy of inundation area depends on using SAR satellite image acquired at time of maximum depth.

  • PDF