• Title/Summary/Keyword: Satellite Remote Sensing

Search Result 2,487, Processing Time 0.03 seconds

A study on analysis to time series data by using vegetation surface roughness index

  • Konda, Asako;Kajiwara, Koji;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.706-708
    • /
    • 2003
  • Index for difference of vegetation surface roughness (BSI: Bi-directional reflectance factor structure Index) was proposed in our laboratory (Konda et al., 2000). It is thought that BSI is useful vegetation index for vegetation monitoring. If it can be applied for global covered satellite data, detailed monitoring of global vegetation can be expected. However, in order to apply BSI to global satellite data, there are some problems to be solved. In this study, in order to make global data set of BSI, it arranged about processing of the global satellite data for making BSI data sets.

  • PDF

Determination of Flood Hydrograph by Remote Sensing Techniques in a Small Watershed (원격탐사 기법에 의한 소유역의 홍수 수문곡선 결정)

  • 남현옥;박경윤;조성익
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.1
    • /
    • pp.13-27
    • /
    • 1989
  • In recent years satellite data have been increasingly used for the analysis of floodprone areas. This study was carried out to demonstrate the usefulness of repetitive satellite imagery in monitoring flood levels of the Pyungchang watershed. Runoff characteristics parameters were analyzed by Soil Conservation Service(SCS) Runoff Curve Number(RCN) based on Landsat imagery and Digital Terrain Model data. The RCN average within the watershed was calculated from RCN estimates for all the pixels(picture elements) and adjusted by antecedent precipitation conditions. The direct runoff hydrograph was derived from the unit hydrograph using SCS dimensionless unit hydrograph and effective rainfalls estimated by the SCS method. In comparsion of the direct runoff hydrograph with the measured rating curve their peak times differ by one hour and peak discharges differ by 5.9 percents of the discharge from each other. It was shown that repetitive satellite image could be very useful in timely estimating watershed runoffs and evaluating ever-changing surface conditions of a river basin.

Comparison of Land Surface Temperatures from Near-surface Measurement and Satellite-based Product

  • Ryu, Jae-Hyun;Jeong, Hoejeong;Choi, Seonwoong;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.609-616
    • /
    • 2019
  • Land surface temperature ($T_s$) is a critical variable for understanding the surface energy exchange between land and atmosphere. Using the data measured from micrometeorological flux towers, three types of $T_s$, obtained using a thermal-infrared radiometer (IRT), a net radiometer, and an equation for sensible heat flux, were compared. The $T_s$ estimated using the net radiometer was highly correlated with the $T_s$ obtained from the IRT. Both values acceptably fit the $T_s$ from the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)satellite. These results will enhance the measurement of land surface temperatures at various scales. Further, they are useful for understanding land surface energy partitioning to evaluate and develop land surface models and algorithms for satellite remote sensing products associated with surface thermal conditions.

CURRENT STATUS OF COMS PROGRAM DEVELOPMENT

  • Baek, Myung-Jin;Han, Cho-Young
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.45-48
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of Meteorological Imager, Geostationary Ocean Color Imager and Ka band Satellite Communication Payload in a single spacecraft platform. In this paper, current status of Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program development is introduced. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into a single satellite to meet the overall satellite requirements. The COMS satellite critical design has been accomplished successfully to meet three different mission payloads. The platform is in Korea, KARI facility for the system integration and test. The expected launch target of COMS satellite is scheduled in June 2009.

  • PDF

A Review on Atmospheric Correction Technique Using Satellite Remote Sensing (인공위성 원격탐사를 이용한 대기보정 기술 고찰)

  • Lee, Kwon-Ho;Yum, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.1011-1030
    • /
    • 2019
  • Remote sensing sensors used in satellites or aircrafts measure electromagnetic waves passing through the earth's atmosphere, and thus the information on the surface of the earth is affected as it is absorbed or scattered by the earth's atmosphere. Although satellites have different wavelength ranges and resolutions depending on the purpose of onboard sensors, in general, atmospheric correction must be made to remove the influence of the atmosphere in order to accurately measure the spectral signal of an object on the earth's surface. The purpose of atmospheric correction is to remove the atmospheric effect from remote sensing images to determine surface reflectivity values and to derive physical parameters of the surface. Until recently, atmospheric correction algorithms have evolved from image-based empirical methods or indirect methods using in-situ observation data to direct methods that numerically interpret more complex radiative transfer processes. This study analyzes the research records of atmospheric correction algorithms developed over the past 40 years, systematically establishes the current state of atmospheric correction technology and the results of major atmospheric correction algorithms and presents the current status and research trends of related technologies.

Estimation of solar Irradiation in Korea peninsula by using GMS-5 data

  • Yoon, Hong-Joo;Cha, Joo-Wan;Chung, Hyo-Sang;Lee, Yong-Seob;Hwang, Byong-Jun;Kim, Young-Haw
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.20-25
    • /
    • 1998
  • Solar irradiation controls the exchange of heat energy between atmosphere and land or ocean, and becomes an important factors to the radiance flux at the surface and the biosphere. In order to estimate solar irradiance and earth albedo In Korea peninsula during 1996, GMS date and paramaterization model was combinationally used. In clear sky, the paramaterization model was used to estimate solar iradiance. Also in cloudy sky, the earth albedo was used to calculate the Interceptive effect of solar irradiance. The hourly solar irradiance [the hourly earth albedo] showed generally very low values with <1.00 MJ/m$^2$hr [high values with >0.65] on the middle part (36.00-36.50$^{\circ}$S) and the Southeastern part (near 34.50$^{\circ}$S) in Korea peninsula, respectively. Satellite estimates (GMS data) with pyramometer measurements (in-situ data) were compared for 21 observed stations. Totally, correlation coefficient showed high values with 0.85. In the monthly variation, correlation coefficient of the spring and summer with rms=about 0.42 MJ/m$^2$hr was better than the autumn and winter with rms >0.5 MJ/m$^2$hr. Generally monthly variations of correlation coefficient between satellite estimetes and pyranometer measurements showed r=0.936 in clear sky during 1 year except only May, June, July and August.

  • PDF

Ocean Optical Properties of Equatorial Pacific Reef Habitat (적도 태평양 산호초 서식지의 해수 반사도 특성)

  • Moon, Jeong-Eon;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.615-625
    • /
    • 2021
  • The coastal areas around Palau Island and Tonga Island, near the Pacific equator, consist of coral reefs, mangrove and seaweed. In particular, understanding the optical properties of sea surface water in coral reef habitats helps improve the accuracy of remote sensing based habitat mapping and identify tropical ecosystem characteristics. Here, we collected spectral characteristics of sea surface water of Palau Island and Tonga Island and analyzed the concentration of suspended matters, absorption coefficient, and remote sensing reflectance to understand the seawater characteristics of the coral reef habitats. Based on the results of the suspended matter concentration analysis, we developed and verified an empirical algorithm to derive the concentration from satellite data using remote sensing reflectance of three bands, 555, 625, 660 nm, showed a high determinant coefficient, 0.98. In conclusion, coral reef habitats in tropical regions are characterized by CASE-I water in terms of the marine optics with oligotrophic properties, and require monitoring using continuous collection and analysis of field data.

Detection of low salinity water in the northern East China Sea in summer using ocean color remote sensing

  • Suh, Young-Sang;Jang, Lee-Hyun;Lee, Na-Kyung;Kim, Bok-Kee
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.649-654
    • /
    • 2002
  • In summer season of 1998, a huge flood occurred around the Yangtze River in the eastern China. The low salinity water less than 28 psu from the river was detected around the southeastern part of the Jeju Island which is located in the southern part of the Korean peninsula. We studied how to detect low salinity water from the Yangtze River, which gives terrible damages to the Korean fisheries. We got the relationships between low surface salinity, turbid water from the Yangtze River and digital ocean color using remote sensing of SeaWiFS satellite in the northern East China Sea in summer seanson of 1998, 1999, 2000 and 2001. The charts of salinity in the northern East China Sea were made by the regenerating of the satellite ocean color data with the formula from the relationships between low salinity, in situ turbid water (transparency) and satellite ocean color.

  • PDF

PROBABILISTIC LANDSLIDE SUSCEPTIBILITY AND FACTOR EFFECT ANALYSIS

  • LEE SARO;AB TALIB JASMI
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.306-309
    • /
    • 2004
  • The susceptibility of landslides and the effect of landslide-related factors at Penang in Malaysia using the Geographic Information System (GIS) and remote sensing data have been evaluated. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from Landsat TM (Thermatic Mapper) satellite images; and the vegetation index value from SPOT HRV (High Resolution Visible) satellite images. Landslide hazardous areas were analysed and mapped using the landslide-occurrence factors employing the probability-frequency ratio method. To assess the effect of these factors, each factor was excluded from the analysis, and its effect verified using the landslide location data. As a result, land 'cover had relatively positive effects, and lithology had relatively negative effects on the landslide susceptibility maps in the study area. In addition, the landslide susceptibility maps using the all factors showed the relatively good results.

  • PDF

Application of Remote Sensing and GIS to the evaluation of riparian buffer zones

  • Ha, Sung-Ryong;Lee, Seung-Chul;Ko, Chang-Hwan;Seo, Se-Deok;Jo, Yun-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.436-440
    • /
    • 2006
  • Diffuse pollution has been considering as a major source of the quality deterioration of water resources. The establishment of riparian vegetation strips of buffers along those areas of water bodies is used to reduce the threat of diffuse pollution. Remote sensing offers a means by which critical areas could be identified, so that subsequent action toward the establishment of riparian zones can be taken. Even though the principal purpose of this research comes from the feasibility of the imagery of KOMPSAT-2 satellite, Landsat TM satellite data, which has 7 bands, are used to characterize the land cover for the study area on the behalf of KOMPSAT-2. This investigation focuses on the assessment of the existing riparian buffer zones for a portion of the upper Geum river watershed from the viewpoint of pollution mitigation by riparian vegetation strip establishment. Through comparing the delineation of riparian buffer zones developed with the existing zones established by the government, we can find the critical distortion points of the existing riparian buffer zone.

  • PDF