• Title/Summary/Keyword: Satellite Precipitation

Search Result 256, Processing Time 0.024 seconds

Development of Pre-Processing and Bias Correction Modules for AMSU-A Satellite Data in the KIAPS Observation Processing System (KIAPS 관측자료 처리시스템에서의 AMSU-A 위성자료 초기 전처리와 편향보정 모듈 개발)

  • Lee, Sihye;Kim, Ju-Hye;Kang, Jeon-Ho;Chun, Hyoung-Wook
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.453-470
    • /
    • 2013
  • As a part of the KIAPS Observation Processing System (KOPS), we have developed the modules of satellite radiance data pre-processing and quality control, which include observation operators to interpolate model state variables into radiances in observation space. AMSU-A (Advanced Microwave Sounding Unit-A) level-1d radiance data have been extracted using the BUFR (Binary Universal Form for the Representation of meteorological data) decoder and a first guess has been calculated with RTTOV (Radiative Transfer for TIROS Operational Vertical Sounder) version 10.2. For initial quality checks, the pixels contaminated by large amounts of cloud liquid water, heavy precipitation, and sea ice have been removed. Channels for assimilation, rejection, or monitoring have been respectively selected for different surface types since the errors from the skin temperature are caused by inaccurate surface emissivity. Correcting the bias caused by errors in the instruments and radiative transfer model is crucial in radiance data pre-processing. We have developed bias correction modules in two steps based on 30-day innovation statistics (observed radiance minus background; O-B). The scan bias correction has been calculated individually for each channel, satellite, and scan position. Then a multiple linear regression of the scan-bias-corrected innovations with several predictors has been employed to correct the airmass bias.

The Application of Satellite Data to Land Surface Process Parameterization in ARPS Model (ARPS 모형 지면 과정 모수화에 위성 자료의 응용)

  • Ha, Kyung-Ja;Suh, Ae-Sook;Chung, Hyo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.99-108
    • /
    • 1998
  • In order to represent the surface characteristics in local meteorological model, soil type, vegetation index, surface roughness length, surface albedo and leaf area index should be prescribed on the surface process parameterization. In this study, the $1^{\circ}/1^{\circ}leaf$ area index, surface roughness length, and snow free surface albedo and fine mesh NDVI with seasonal variation derived from the satellite observation were applied to the land surface process parameterization. From comparison between with and without satellite data in the interactions between biosphere and atmosphere, land and atmosphere, the sensitivity of the simulated heat, energy and water vapor fluxes, ground temperature, wind, canopy water content, specific humidity, and precipitation fields were investigated.

Development of Rainfall Estimation Technology in the Korean Peninsula in the Event of Heavy Rain using COMS and GPM Satellites (천리안 위성과 GPM 위성을 활용한 한반도 호우사상 강우추정 기술 개발)

  • Cheon, Eun Ji;Lee, Dalgeun;Yu, Jung Hum
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.851-859
    • /
    • 2019
  • The COMS satellites take image of the Korean Peninsula every 15 minutes, but due to the limitations of the observational channels, they tend to underestimate when estimating rainfall. In this study, we developed satellite-based rainfall estimation technology using COMS and GPM that can be used in the heavy rain on the Korean Peninsula. The time resolution and spatial resolution of COMS satellites and GPM satellites were matched to improve accuracy using GPM IMERG data. As a result, it showed that the number of correlations with the ASOS observations was more than 0.7, enabling the estimation of rainfalls that are more accurate than the estimates of rainfall by COMS satellites. It is believed that the application of the subsequent satellite(GK-2A) will provide more accurate rainfall estimation information in the future. Therefore, we expect greater utilization in disaster management for the ungauged areas.

Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 (위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로)

  • Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.371-384
    • /
    • 2014
  • This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.

Cloud-cell Tracking Analysis using Satellite Image of Extreme Heavy Snowfall in the Yeongdong Region (영동지역의 극한 대설에 대한 위성관측으로부터 구름 추적)

  • Cho, Young-Jun;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.83-107
    • /
    • 2014
  • This study presents spatial characteristics of cloud using satellite image in the extreme heavy snowfall of the Yeongdong region. 3 extreme heavy snowfall events in the Yeongdong region during the recent 12 years (2001 ~ 2012) are selected for which the fresh snow cover exceed 50 cm/day. Spatial characteristics (minimum brightness temperature; Tmin, cloud size, center of cloud-cell) of cloud are analyzed by tracking main cloud-cell related with these events. These characteristics are compared with radar precipitation in the Yeongdong region to investigate relationship between cloud and precipitation. The results are summarized as follows, selected extreme heavy snowfall events are associated with the isolated, well-developed, and small-scale convective cloud which is developing over the Yeongdong region or moving from over East Korea Bay to the Yeongdong region. During the period of main precipitation, cloud-cell Tmin is low ($-40{\sim}-50^{\circ}C$) and cloud area is small (17,000 ~ 40,000 $km^2$). Precipitation area (${\geq}$ 0.5 mm/hr) from radar also shows small and isolated shape (4,000 ~ 8,000 $km^2$). The locations of the cloud and precipitation are similar, but in there centers are located closely to the coast of the Yeongdong region. In all events the extreme heavy snowfall occur in the period a developed cloud-cell was moving into the coastal waters of the Yeongdong. However, it was found that developing stage of cloud and precipitation are not well matched each other in one of 3 events. Water vapor image shows that cloud-cell is developed on the northern edge of the dry(dark) region. Therefore, at the result analyzed from cloud and precipitation, selected extreme heavy snowfall events are associated with small-scale secondary cyclone or vortex, not explosive polar low. Detection and tracking small-scale cloud-cell in the real-time forecasting of the Yeongdong extreme heavy snowfall is important.

A Study on Feasibility of Cloud Seeding in Korea (한반도에서의 인공증우 가능성에 대한 연구)

  • Chung, Kwan-Young;Eom, Won-Geun;Kim, Min-Jeong;Jung, Young-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.621-635
    • /
    • 1998
  • The feasibility of cloud seeding in Korea is presented from analyses of precipitation, cloud amount, satellite data, and upper air data. The daily mean precipitation over Dae-Kwan-Ryong is the largest(~4.5 mm/day), while the intensity of precipitation (amount of yearly rainfall divided by the frequency of rain days) over Southern area is above 14 mm/day, which shows the largest in Korea. Both the daily mean and the intensity of precipitation over Andong area are the smallest with values of ~2.7 mm/day and ~11 mm/day, respectively. In the meanwhile, the occurrence frequency of appropriate cloud top temperature (-10'~-30') for cloud seeding over the region has a large value (~130 days/year). The precipitation patterns of the region vary with wind direction and intensity calculated from 43 AWSs(Automatic Weather Station) and the additional 7 rain guages which were installed along Northern and Southern part of the Sobaek mountain. The Sc(Stratocumulus) cloud type over Andong is frequently observed, and Cirrus and Altostratus next. From the results, it is estimated that the feasibility of cloud seeding over the area would be high if a proper strategy of cloud seeding is set up. LCL (Lifting Condensation Level) and CCL (Convective Condensation Level) have the most frequency in 1000-950 hPa being occupied 4/9 of total analysis period and in 400-500 hPa, respectively, with both small variations from season to season. The correlation between vapor mixing ratio and CCL is the highest in Summer and the lowest in Winter. It means that the height of cumulus in Summer is high with an abundant water vapor but vice versa in Winter, and that the strategy of cloud seeding should be different with seasons.

  • PDF

Inflow Estimation into Chungju Reservoir Using RADAR Forecasted Precipitation Data and ANFIS (RADAR 강우예측자료와 ANFIS를 이용한 충주댐 유입량 예측)

  • Choi, Changwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.857-871
    • /
    • 2013
  • The interest in rainfall observation and forecasting using remote sensing method like RADAR (Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS

  • LEE JEONGWOO;BONG SU-CHAN;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.63-73
    • /
    • 2003
  • Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.

Development of Satellite-based Drought Indices for Assessing Wildfire Risk (산불발생위험 추정을 위한 위성기반 가뭄지수 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Lee, Jaese;Lee, Byungdoo;Kwon, ChunGeun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1285-1298
    • /
    • 2019
  • Drought is one of the factors that can cause wildfires. Drought is related to not only the occurrence of wildfires but also their frequency, extent and severity. In South Korea, most wildfires occur in dry seasons (i.e. spring and autumn), which are highly correlated to drought events. In this study, we examined the relationship between wildfire occurrence and drought factors, and developed satellite-based new drought indices for assessing wildfire risk over South Korea. Drought factors used in this study were high-resolution downscaled soil moisture, Normalized Different Water Index (NDWI), Normalized Multi-band Drought Index (NMDI), Normalized Different Drought Index (NDDI), Temperature Condition Index (TCI), Precipitation Condition Index (PCI) and Vegetation Condition Index (VCI). Drought indices were then proposed through weighted linear combination and one-class support vector machine (One-class SVM) using the drought factors. We found that most drought factors, in particular, soil moisture, NDWI, and PCI were linked well to wildfire occurrence. The validation results using wildfire cases in 2018 showed that all five linear combinations produced consistently good performance (> 88% in occurrence match). In particular, the combination of soil moisture and NDWI, and the combination of soil moisture, NDWI, and precipitation were found to be appropriate for representing wildfire risk.