• Title/Summary/Keyword: Satellite Navigation System

Search Result 855, Processing Time 0.028 seconds

Development of a Driving Simulator for Telematics Human-Machine Interface Studies (텔레매틱스 HMI 연구를 위한 드라이빙 시뮬레이터의 개발)

  • Koo, Tae-Yun;Kim, Bae-Young;Shin, Hee-Jong;Son, Young-Tak;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.16-23
    • /
    • 2009
  • Driving simulators are useful tools not only to test the components of future cars but also to evaluate the telematics service and HMI (Human-Machine Interface). However driving simulators cannot be implemented to test and evaluate the telematics service system because the GPS (Global Positioning System) which contains basic functional support for the telematics module do not work in the VR (virtual reality) environment. This paper presents a method to implement telematics service to a driving simulator by developing the GPS simulator which is able to emulate GPS satellite signals consist of NMEA-0183 protocol and RS232C communication standards. It is expected that the driving simulator with the GPS simulator can be used to study HMI and human-factor evaluations of the commercial telematics system to realize the HiLES (Human-in-the-Loop Evaluation System).

Steering Performance Test of Autonomous Guided Vehicle(AGV) Based on Global Navigation Satellite System(GNSS) (위성항법 기반 AGV(Autonomous Guided Vehicle)의 조향 성능 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Kim, Jeong-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a GNSS-based AGV system was designed, and steering tested on a golf cart using electric wires in order to confirm the control efficiency of the low speed vehicle which used only position information of GNSS. After analyzed the existing AGVs system, we developed controller and steering algorithm using GNSS based position information. To analyze the performance of the developed controller and steering algorithm, straight-type and circle-type trajectory test are executed. The results show that steering performance of GNSS-based AGV system is ${\pm}\;0.2m$ for a reference trajectory.

A Study on Kinematic Positioning by GPS Platformed on Moving Vehicle (이동차량에 탑재된 GPS의 동적 위치측정에 관한 연구)

  • 최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.373-381
    • /
    • 1999
  • Mobile Mapping System can be defined as vehicle mapping system which collects rapidly spatial data by integrated Gps/digital imaging system. Kinematic positioning by GPS is essential technology of Mobile Mapping System. This paper aims at analysing the accuracy and efficiency of kinematic positioning by GPS platformed on moving vehicle. For the purpose, roads were surveyed by vehicle/kinematic GPS. The results show that vehicle/kinematic GPS can measure spatial position faster, and still maintain a reasonable accuracy. But inertial navigation system and GPS should be integrated to compute continuous vehicle track and overcome gaps by blocked satellite signals for the more accurate positioning.

  • PDF

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.

Generation of Meteorological Parameters for Tropospheric Delay on GNSS Signal (GNSS 신호의 대류층 지연오차 보정을 위한 기상 정보 생성)

  • Jung, Sung-Wook;Baek, Jeong-Ho;Jo, Jung-Hyun;Lee, Jae-Won;Park, In-Kwan;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.267-282
    • /
    • 2008
  • The GNSS (Global Navigation Satellite System) signal is delayed by the neutral atmosphere at the troposphere, so that the delay is one of major error sources for GNSS precise positioning. The tropospheric delay is an integrated refractive index along the path of GNSS signal. The refractive index is empirically related to standard meteorological variables, such as pressure, temperature and water vapor partial pressure, therefore the tropospheric delay could be calculated from them. In this paper, it is presented how to generate meteorological data where observation cannot be performed. KASI(Korea Astronomy & Space Science Institute) has operated 9 GPS (Global Positioning System) permanent stations equipped with co-located MET3A, which is a meteorological sensor. Meteorological data are generated from observations of MET3A by Ordinary Kriging. To compensate a blank of observation data, simple models which consider periodic characteristics for meteorological data, are employed.

Effects on Localization by the Period Variation of Measured Position (위치인식 신호획득 주기변화에 의한 위치추정값 영향)

  • Shin, Changjoo;Kwon, Osoon;Seo, Jungmin;Kang, Hyoun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.23-28
    • /
    • 2019
  • A track type underwater construction robot(URI-R) which can trench on seabed is being developed by Korea Institute of Ocean Science & Technology. During the underwater trenching work, the robot is exposed high intensive noise and vibration so the underwater localization signal may not be obtained properly by the acoustic tracking system. Therefore it is necessary to research about continuous localization even though the measured position signal comes in intermittently. In this paper, the experiments were carried out on land to simulated the underwater operating environment characteristics. To estimate its position, inertial navigation system and global navigation satellite system are used. The effects of the period variation while localizing is investigated by the experiments, and the application for URI-R is proposed.

A Design of Software Receiver for GNSS Signal Processing

  • Choi, Seung-Hyun;Kim, Jae-Hyun;Shin, Cheon-Sig;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.48-52
    • /
    • 2007
  • Recently, the research of GPS receiver which uses the Software-Defined Radio(SDR) technique is being actively proceeded instead of traditional hardware-based receiver. The software-based GPS receiver indicates that the signal acquisition and tracking treated by the hardware-based platform are processed as the software technique through a microprocessor. In this paper, GPS software receiver is designed by using SDR technique and then the signal acquisition, tracking, and the navigation message decoding parts are verified through the PC-based simulation. Moreover, the efficient algorithms are developed about the signal acquisition and tracking parts in order to obtain the accurate pseudorange. Finally, the pseudorange is calculated through the relative channel delay received through the different satellite of L1 frequency band. GPS software receiver proposed in this paper will be included in the element of GPS/Galileo complex system of development target and will provide not only the method that verifies the performance for Galileo Sensor Station standard but also usability by providing various debugging environments.

  • PDF

An Environmental Analysis of Candidate SBAS Reference Station (위성기반 보강시스템 기준국 후보지의 환경 분석)

  • Han, Younghoon;Park, Sul Gee;Lee, Sangheon;Park, Sang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.685-688
    • /
    • 2016
  • SBAS(Satellite Based Augmentation System) broadcasts the correction message based on satellite communication to improve the positioning accuracy of GNSS user. For this reason, SBAS is actively being utilized on navigation part. To apply SBAS to navigation part, it should satisfy not only accuracy but also integrity, continuity, availability, coverage requirements and so on. Since SBAS reference station is the base infrastructure of SBAS, it is the main factor to determine the environment, position, and geometry of reference stations to achieve SBAS service performance. Therefore, a site environmental analysis should be performed prior to the selection of SBAS reference station. In this paper, it performs the environmental analysis of NDGPS(Nationwide Differential GPS) reference station sites on the premise that SBAS reference station will be co-operated in the same site of NDGPS operated by MOF(Ministry of Oceans and Fisheries). The environmental analysis is conducted as carrying out the visibility analysis of GPS satellite and interference analysis. This paper also presents the brief procedures and requirements for site survey of SBAS reference station.

  • PDF

A design process of central stations for GNSS based land transportation infrastructure network (육상교통 사용자를 위한 위성항법기반 중앙국 시스템 설계 및 구현)

  • Son, Min-Hyuk;Kim, Gue-Heon;Heo, Moon-Bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.374-377
    • /
    • 2012
  • GNSS(Global Navigation Satellite System) based land transportation infrastructure system is consists of receiving station and central station. The functions of the central system include receiving station's data gathering and decoding, carrier correction and integrity information generated, transmission of data in real-time. In general, The central station architecture should take into account various important points relating to hardware/software of system, data archiving and checking, availability and continuity of operation, etc. There is a fundamental need for a generic design capable of being used in any situation. Also, There is need to develop an expandable and interoperable central station architecture. In this paper, the process of design and manufacture and verification will be introduced.

  • PDF

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.