• Title/Summary/Keyword: Satellite Navigation System

Search Result 830, Processing Time 0.024 seconds

The Status and Plan of Galileo Project (GALILEO PROJECT 추진현황 및 대응방안 연구(2))

  • Kong, Hyun-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.368-371
    • /
    • 2009
  • The GALILEO Project is to be the one and only European Global Navigation Satellite System(GNSS). The GIVE-B satellite, a second experimental GALILEO satellite was launched and started the transmission of ranging signals. GIOVE-B satellite is intended as a trueprototype of future GALILEO satellite. So I introduce the standard deviation of code multi path, signal power, antennas performance and L1-E5 group delay etc. Therefore I comprehend the current progress and tend of GALILEO Project and try to propose the national countremeasures.

  • PDF

Application of the Difference Method in a Fault Test on GPS Carrier Phase Measurements (차분 기법을 적용한 GPS 반송파 위상 측정치 고장 검사)

  • Son, Eunseong;Im, Sung-Hyuck;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.601-607
    • /
    • 2017
  • This study performed fault test on global positoining system (GPS) carrier phase measurements, which is a preprocessing step to generate the positioning correction information based on the global navigation satellite system (GNSS) infrastructure. The existing carrier acceleration ramp step test (CARST) method affects the test result by using the mean value to eliminate the receiver clock error. In this regard, this study applied differencing and compared its results with those of the existing CARST. The fault simulation that applied artificial faults to the actual data found that the fault could be detected independently on each satellite when difference method was applied, and the single difference CARST and the double difference CARST produced similar results. The comparison with the existing method using actual data demonstrated the strengths and weaknesses of satellite and station single difference. Nevertheless, it is our understanding that it would require an additional analysis to determine whether the results were affected by the satellite or receiver clock error.

Preliminary Design of GBAS Onboard Test Equipment

  • Jeong, Myeong-Sook;Ko, Wan-Jin;Bae, Joong Won;Jun, Hyang Sig
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • When the ground subsystem of Ground Based Augmentation System(GBAS) is installed at the airport, the functions and performance of subsystem should be evaluated through ground and flight testing at the pre-commissioning phase. In the case of GBAS flight testing, it can be conducted by the existing flight check aircraft, but the GBAS ground testing requires the development of specially customized equipment to perform the ground testing. Therefore, this paper describes the preliminary design of GBAS onboard test equipment which can be independently used for the GBAS ground testing and flight testing on a car and an aircraft.

Considerations for Design and Implementation of a RF Emitter Localization System with Array Antennas

  • Lim, Deok Won;Lim, Soon;Chun, Sebum;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.37-45
    • /
    • 2016
  • In this paper, design and implementation issues for a network-oriented RF emitter localization system with array antenna are discussed. For hardware, the problem of array mismatch and RF/IF channel mismatch are introduced and the calibration schemes for solving those problems are also provided. For software, it is explained how to overcome the drawback of conventional MUltiple Signal Identification and Classification (MUSIC) algorithm in a point of identifying the number of received signals and problems such as Data Association Problem and Ghost Node Problem in regard to multiple emitter localization are presented with some approaches for getting around those problems. Finally, for implementation, a criterion for arranging each of sensors and a requirement for alignment of array antenna' orientation are also given.

DGNSS-CP Performance Comparison of Each Observation Matrix Calculation Method (관측 행렬 산출 기법 별 DGNSS-CP 성능 비교)

  • Shin, Dong-hyun;Lim, Cheol-soon;Seok, Hyo-jeong;Yoon, Dong-hwan;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.433-439
    • /
    • 2016
  • Several low-cost global navigation satellite system (GNSS) receivers do not support general range-domain correction, and DGNSS-CP (differential GNSS) method had been suggested to solve this problem. It improves its position accuracy by projecting range-domain corrections to the position-domain and then differentiating the stand-alone position by the projected correction. To project the range-domain correction, line-of-sight vectors from the receiver to each satellite should be calculated. The line-of-sight vectors can be obtained from GNSS broadcast ephemeris data or satellite direction information, and this paper shows positioning performance for the two methods. Stand-alone positioning result provided from Septentrio PolaRx4 Pro receiver was used to show the difference. The satellite direction information can reduce the computing load for the DGNSS-CP by 1/15, even though its root mean square(RMS) of position error is bigger than that of ephemeris data by 0.1m.

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

Conceptual Design Analysis of Satellite Communication System for KASS (KASS 위성통신시스템 개념설계 분석)

  • Sin, Cheon Sig;You, Moonhee;Hyoung, Chang-Hee;Lee, Sanguk
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • High-level conceptual design analysis results of satellite communication system for Korea augmentation satellite system (KASS) satellite communication system, which is a part of KASS and consisted of KASS uplink Stations and two leased GEO is presented in this paper. We present major functions such as receiving correction and integrity message from central processing system, taking forward error correction for the message, modulating and up converting signal and conceptual design analysis for concepts for design process, GEO precise orbit determination for GEO ranging that is additional function, and clock steering for synchronization of clocks between GEO and GPS satellites. In addition to these, KASS requires 2.2 MHz for SBAS Augmentation service and 18.5 MHz for Geo-ranging service as minimum bandwidths as a results of service performance analysis of GEO ranging with respect to navigation payload(transponder) RF bandwidth is presented. These analysis results will be fed into KASS communication system design by carrying out final analysis after determining two GEOs and sites of KASS uplink stations.

Optimal Satellite Constellation Design for Korean Navigation Satellite System (한국형 위성항법시스템을 위한 위성군집궤도 최적 설계)

  • Kim, Han Byeol;Kim, Heung Seob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • NSS (Navigation satellite system) provides the information for determining the position, velocity and time of users in real time using satellite-networking, and is classified into GNSS (Global NSS) and RNSS (Regional NSS). Although GNSS services for global users, the exactitude of provided information is dissatisfied with the degree required in modern systems such as unmanned system, autonomous navigation system for aircraft, ship and others, air-traffic control system. Especially, due to concern about the monopoly status of the countries operating it, some other countries have already considered establishing RNSS. The RNSS services for users within a specific area, however, it not only gives more precise information than those from GNSS, but also can be operated independently from the NSS of other countries. Thus, for Korean RNSS, this paper suggests the methodology to design the satellite constellation considering the regional features of Korean Peninsula. It intends to determine the orbits and the arrangement of navigation satellites for minimizing PDOP (Position dilution of precision). PGA (Parallel Genetic Algorithm) geared to solve this nonlinear optimization problem is proposed and STK (System tool kit) software is used for simulating their space flight. The PGA is composed of several GAs and iterates the process that they search the solution for a problem during the pre-specified generations, and then mutually exchange the superior solutions investigated by each GA. Numerical experiments were performed with increasing from four to seven satellites for Korean RNSS. When the RNSS was established by seven satellites, the time ratio that PDOP was measured to less than 5 (i.e. better than 'Good' level on the meaning of the PDOP value) was found to 94.3% and PDOP was always kept at 10 or less (i.e. better than 'Moderate' level).

Analysis of the Results for the Operation of a GPS Jammer Localization System

  • Lim, Deok Won;Chun, Sebum;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, results of a jammer detection and localization system operation are given. The system consists of receiver stations, a central tracking station, and a monitoring station and it was developed by our institute in 2014. Through real-time tests, it is confirmed that the developed system has an ability to estimate the location of interference sources with an accuracy of 50 m (CEP) even they was 10 km away. After verification, this system was installed in Incheon International Airport and operating results are being monitored by the airport and our institute continuously. In this year, there were some events that jamming signals were received from North Korea, so the data were analyzed and given here.