• Title/Summary/Keyword: Satellite Navigation System

Search Result 855, Processing Time 0.034 seconds

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

Performance Enhancement of Emergency Rescue System using Surface Correlation Technology

  • Shin, Beomju;Lee, Jung Ho;Shin, Donghyun;Yu, Changsu;Kyung, Hankyeol;Lee, Taikjin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.183-189
    • /
    • 2020
  • In emergency rescue situations, the localization accuracy of the rescue requestor is a very important factor in determining the success or failure of the rescue. Indoors where Global Navigation Satellite System (GNSS) is not operated, there is no choice but to use Wi-Fi or LTE signals. However, the performance of the current emergency rescue system utilizing those RF signals is exceedingly low. In this study, the effectiveness of the surface correlation technology using the accumulated signal pattern of RF signals was verified in relation to the emergency localization technology. To validate the proposed system, we configured and tested an emergency rescue scenario in multi-floors building. When the emergency rescue was requested, it was confirmed that the initial localization error was large owing to the short length of the accumulated signal pattern. However, the localization error decreased over time, which eventually led to the accurate location information being delivered to the rescuer.

Frequency Sharing with FSS Earth Stations for CBRS Services (CBRS 서비스를 위한 FSS 지구국 주파수 공동사용)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.507-514
    • /
    • 2019
  • Federal communications commissions (FCC) has announced the first set of rules for 3.5 GHz (3,550 - 3,700 MHz) band used Navy radar and fixed satellite service (FSS) earth stations as primary service to sharing for citizen broadband radio service (CBRS) enable development of relatively low powered network technologies like small cells. Since CBRS sharing technique based on the 3-tiered spectrum access system (SAS) is able to protect the higher tiered users from harmful interference from lower tiered users, it has been considered actively to be introduced in Korea. However, 3.5 GHz band had been already allocated to the 5G services in Korea, the sharing studies have been carried out for 3,700 - 5,000 MHz, As the result, the 3.8 GHz (3,800 - 3,900 MHz) band used for only FSS system is able to be sharing, and an introduction of CBRS has been proposed in Korea by analyzing the interference to the FSS earth stations.

4 Way Quadrature Divider Using Metamaterial Transmission Lines (Metamaterial 전송선로를 이용한 4출력 90° 위상 분배기)

  • Cho, Hak-Rae;Kim, Jeong-pyo;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2018
  • We propose a wideband 4-way quadrature divider for global navigation satellite system (GNSS). The proposed divider consists of one balun and two 2-way quadrature dividers. In the balun, the input power is divided by a wilkinson divider and the out of phase characteristic is achieved by ${\pm}90^{\circ}$ metamaterial transmission line phase shifters applied two output ports. The structures of two quadrature dividers is similar to that of the balun, but the phase shifters of two output ports are exchanged by ${\pm}90^{\circ}$ metamaterial transmission line. Metamaterial transmission lines are designed by using five LC loaded transmission line (LCL-TL) unit cells. The fabricated 4 way quadrature divider has the phase characteristic of $90^{\circ}{\pm}10^{\circ}$ in 1.165 - 1.61 GHz.

Time Synchronization Technique for GNSS Jamming Monitoring Network System (GNSS 재밍 신호 모니터링 네트워크 시스템을 위한 독립된 GNSS 수신기 간 시각 동기화 기법)

  • Jin, Gwon gyu;Song, Young jin;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2021
  • Global Navigation Satellite System (GNSS) receivers are intrinsically vulnerable to radio frequency jamming signals due to the fundamental property of radio navigation systems. A GNSS jamming monitoring system that is capable of jamming detection, classification and localization is essential for infrastructure for autonomous driving systems. For these 3 functionalities, a GNSS jamming monitoring network consisting of a multiple of low-cost GNSS receivers distributed in a certain area is needed, and the precise time synchronizaion between multiple independent GNSS receivers in the network is an essential element. This paper presents a precise time synchronization method based on the direct use of Time Difference of Arrival (TDOA) technique in signal domain. A block interpolation method is additionally incorporated into the method in order to maintain the precision of time synchronization even with the relatively low sampling rate of the received signals for computational efficiency. The feasibility of the proposed approach is verified in the numerical simualtions.

Pseudolite/Ultra-low-cost IMU Integrated Robust Indoor Navigation System Through Real-time Cycle Slip Detection and Compensation

  • Kim, Moon Ki;Kim, O-Jong;Kim, Youn Sil;Jeon, Sang Hoon;No, Hee Kwon;Shin, Beom Ju;Kim, Jung Beom;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • In recent years, research has been actively conducted on the navigation in an indoor environment where Global Navigation Satellite System signals are unavailable. Among them, a study performed indoor navigation by integrating pseudolite carrier and Inertial Measurement Unit (IMU) sensor. However, in this case, there was no solution for the cycle slip occurring in the carrier. In another study, cycle slip detection and compensation were performed by integrating Global Positioning System (GPS) and IMU in an outdoor environment. However, in an indoor environment, cycle slip occurs more easily and frequently, and thus the occurrence of half cycle slip also increases. Accordingly, cycle slip detection based on 1 cycle unit has limitations. Therefore, in the present study, the aforementioned problems were resolved by performing indoor navigation through the integration of pseudolite and ultra-low-cost IMU embedded in a smartphone and by performing half cycle slip detection and compensation based on this. In addition, it was verified through the actual implementation of real-time navigation.

Investigation on Figures-of-Merit of Signal Performance for Next Generation RNSS Signal Design

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.191-205
    • /
    • 2020
  • Designing a new signal is essential in the development of a new Radio Navigation Satellite Service (RNSS) system. This paper introduces the signal design parameters and the figures of merit (FoMs) to be considered in designing a new RNSS signal, and then reviews their relationship in details. In addition, we show examples of the trade-off analysis between FoMs according to the signal design scenarios using an analytical simulation tool based on the relationship between the signal design parameters and the FoMs.

GNSS Error Generation Simulator for Signal Quality Monitoring of KASS

  • Ji, Gun-Hoon;Choi, Jong-Yeoun;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.341-351
    • /
    • 2021
  • In this paper, a GNSS error generation simulator for Signal Quality Monitoring (SQM) is implemented by using Matlab based on mathematical models derived from the effect of GNSS signal and measurement errors. The GNSS signal measurement errors of interest in this paper include three cases such as Evil Wave Form (EWF), Multipath (MP) and Radio Frequency Interference (RFI). In order to verify the validity of the generated measurement errors, a simple form of metrics for detecting and monitoring GNSS errors is included in the simulator. The GNSS errors generated by the simulator are added to the GNSS measurement data from commercial GNSS receiver in real time, and then, the SQM is tested for various scenarios of each case configured by scenario setting of the user.