• Title/Summary/Keyword: Satellite Navigation

Search Result 1,061, Processing Time 0.032 seconds

Survey of Signal Design for Global Navigation Satellite Systems (GNSS 신호 설계 동향조사)

  • Jong Hyun Jeon;Jeonghang Lee;Jeongwan Kang;Sunwoo Kim;Jung-Min Joo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In this paper, we investigate the signal design of six (USA, EU, Russia, China, Japan, and India) countries for Global Navigation Satellite Systems (GNSS). Recently, a navigation satellite system that is capable of high-precision and reliable Positioning, Navigation, Timing (PNT) services has been developed. Prior to system design, a survey of the signal design for other GNSS systems should precede to ensure compatibility and interoperability with other GNSS. The signal design includes carrier frequency, Pseudorandom Noise (PRN) code, modulation, navigation service, etc. Specifically, GNSS is allocated L1, L2, and L5 bands, with recent additions of the L6 and S bands. GNSS uses PRN code (such as Gold, Weil, etc) to distinguish satellites that transmit signals simultaneously on the same frequency band. For modulation, both Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) have been widely used to avoid collision in the frequency spectrum, and alternating BOCs are adopted to distinguish pilot and data components. Through the survey of other GNSS' signal designs, we provide insights for guiding the design of new satellite navigation systems.

A Study on the Orbits and the Ground-based Optical Tracking of a Future Korean Navigation Satellite System (미래 한국형 위성항법시스템의 궤도와 지상기반 광학추적에 대한 연구)

  • Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Choi, Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.121-129
    • /
    • 2012
  • Any development plan of a Korean space-based navigational system has been neither designed nor introduced yet. However, the demand for the development of a domestic regional satellite navigation system can be originated from the outside of market. The growing dependency on satellite navigational systems in Korea eventually requires the retainment and the operation of a domestic navigational satellite system. There is not many choices on the orbit designs and the system design concepts of a regional augmented navigation satellite system or a regional navigation satellite system for the service on the vicinity of the Korean peninsular. Space situational awareness (SSA) has been a rising issue for both national security and more realistic space business in Korea. Also SSA related technologies in Korea is a newly inaugurated area and is necessary to generate a navigation messages and maintain a future Korean navigation satellite system. In this study, the availability of Japanese Quasi Zenith Satellite System (QZSS) expected to be deployed definitely sooner than Korean counter-part is analyzed. The availability of the similar configured system over Korea is investigated with assumed QZSS type orbit. Also, feasible configuration of orbits for domestic navigation satellite system is suggested. And the observability of a ground-based optical tracking system as a secondary tracking capability is analyzed.

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

A Study of Positioning Error Based on the Satellite Navigation System (위성항법시스템기반의 위치오차에 관한 연구)

  • Park, Chi-Ho;Kim, Nam-Hyeok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.23-33
    • /
    • 2012
  • This paper is a study on precise point positioning using global navigation satellite system. This paper studies inherent barriers of global navigation satellite system such as increase in shadowed areas and positioning errors when signals cannot be received due to various environmental factors. It analyzes performance of various receivers, changes in number of satellite and DOP(Dilution of Precision) following changes in environment such as center of a road, side of a road, residential area, high building, and alleys. It also studies changes in positioning error. The objective of this study lies on understanding the range of positioning error following changes in environment and the cause of error, and enhancing the reliability and safety of the global navigation satellite system.

DGNSS-CP Performance Comparison of Each Observation Matrix Calculation Method (관측 행렬 산출 기법 별 DGNSS-CP 성능 비교)

  • Shin, Dong-hyun;Lim, Cheol-soon;Seok, Hyo-jeong;Yoon, Dong-hwan;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.433-439
    • /
    • 2016
  • Several low-cost global navigation satellite system (GNSS) receivers do not support general range-domain correction, and DGNSS-CP (differential GNSS) method had been suggested to solve this problem. It improves its position accuracy by projecting range-domain corrections to the position-domain and then differentiating the stand-alone position by the projected correction. To project the range-domain correction, line-of-sight vectors from the receiver to each satellite should be calculated. The line-of-sight vectors can be obtained from GNSS broadcast ephemeris data or satellite direction information, and this paper shows positioning performance for the two methods. Stand-alone positioning result provided from Septentrio PolaRx4 Pro receiver was used to show the difference. The satellite direction information can reduce the computing load for the DGNSS-CP by 1/15, even though its root mean square(RMS) of position error is bigger than that of ephemeris data by 0.1m.

A Study of a Reliable Positioning Based on Technology Convergence of a Satellite Navigation System and a Vision System (위성항법시스템과 비전시스템 융합 기술 기반의 신뢰성있는 위치 측위에 관한 연구)

  • Park, Chi-Ho;Kwon, Soon;Lee, Chung-Hee;Jung, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.20-28
    • /
    • 2011
  • This paper proposes a reliable high-precision positioning system that converges a satellite navigation system and a vision system in order to resolve position errors and outdoor shaded areas, two disadvantages of a satellite navigation system. In kinematic point positioning, the number of available satellite navigation systems changes in accordance with a moving object's position. For location determination of the object, it should receive location data from at least four satellite navigation systems. However, in urban areas, exact location determination is difficult due to factors like high buildings, obstacles, and reflected waves. In order to deal with the above problem, a vision system was employed. First, determine an exact position value of a specific building in urban areas whose environment is poor for a satellite navigation. Then, identify such building by a vision system and its position error is corrected using such building. A moving object can identify such specific building using a vision system while moving, make location data values, and revise location calculations, thereby resulting in reliable high precision location determination.

Automated Mismatch Detection based on Matching and Robust Estimation for Automated Image Navigation

  • Lee Tae-Yoon;Kim Taejung;Choi Rae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.709-712
    • /
    • 2005
  • Ground processing for geostationary weather satellite such as GOES, MTSAT includes the process called image navigation. Image navigation means the retrieval of satellite navigational parameters from images and requires landmark detection by matching satellite images against landmark chips. For an automated preprocessing, a matching must be performed automatically. However, if match results contain errors, the accuracy of image navigation deteriorates. To overcome this problem, we propose the use of a robust estimation technique, called Random Sample Consensus (RANSAC), to automatically detect mismatches. We tested GOES-9 satellite images with 30 landmark chips. Landmark chips were extracted from the world shoreline database. To them, matching was applied and mismatch results were detected automatically by RANSAC. Results showed that all mismatches were detected correctly by RANSAC with a threshold value of 2.5 pixels.

  • PDF

Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • This study analyzed positioning accuracy of the multi-differential global navigation satellite system (DGNSS) algorithm that integrated GPS, GLONASS, and BDS. Prior to the analysis, four sites of which satellite observation environment was different were selected, and satellite observation environments for each site were analyzed. The analysis results of the algorithm performance at each of the survey points showed that high positioning performance was obtained by using DGPS only without integration of satellite navigation systems in the open sky environment but the positioning performance of multi-DGNSS became higher as the satellite observation environments degraded. The comparison results of improved positioning performance of the multi-DGNSS at the poor reception environment compared to differential global positioning system (DGPS) positioning results showed that horizontal accuracy was improved by 78% and vertical accuracy was improved by 65% approximately.

Quick Evaluation of Spacecraft Orbit Maneuver Using Small Sets of Real-time GPS Navigation Solutions

  • Lee, Byoung-Sun;Lee, Ho-Jin;Lee, Seong-Pal;Kim, Jong-Ah;Park, Hae-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.458-458
    • /
    • 2000
  • Quick evaluations of two in-plane orbit maneuvers using small see of real-time CPS navigation solutions were peformed lot the KOMPSAT-1 spacecraft operation. Real-time GPS navigation solutions of the KOMPSAT-1 were collected during the Korean Ground Station(KGS) pass. Only a few sets of position and velocity data after completion of the thruster firing were used for the quick maneuver evaluations. The results were used for antenna pointing data predictions for the next station contact. Normal orbit maneuver evaluations using large see of playback GPS navigation solutions were also performed and the result were compared with the quick evaluation results.

  • PDF

Alternative Positioning, Navigation, and Timing Applicable to Domestic PBN Implementation (국내 PBN 이행을 위한 대안 항법 적용 방안)

  • Kim, Mu-Geun;Kang, Ja-Young;Chang, Jae-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Republic of Korea has established its performance-based navigation (PBN) implementation plan in 2010 for ensuring a smooth transition to PBN operations and relevant new flight procedures are being developed in accordance with the roadmap. Various Navigation aids (NAVAIDs) like global navigation satellite systems (GNSS), distance measuring equipment (DME), VHF omnidirectional range (VOR), inertial navigation system (INS) are used to support PBN procedures. Among them, GNSS would play a central role in PBN implementation. However, vulnerability of satellite navigation signals to artificial and natural interferences has been discovered and various alternative positioning, navigation and timing (APNT) technologies are under development in many countries. In this paper, we study whether continuous PBN operations can be achievable without GNSS signals. As a result, it shows that some of the domestic airports require the construction of APNT in the approach area.