• Title/Summary/Keyword: Satellite Navigation

Search Result 1,081, Processing Time 0.034 seconds

Choice of Efficient Sampling Rate for GNSS Signal Generation Simulators

  • Jinseon Son;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.237-244
    • /
    • 2023
  • A signal generation simulator is an economical and useful solution in Global Navigation Satellite System (GNSS) receiver design and testing. A software-defined radio approach is widely used both in receivers and simulators, and its flexible structure to adopt to new signals is ideally suited to the testing of a receiver and signal processing algorithm in the signal design phase of a new satellite-based navigation system before the deployment of satellites in space. The generation of highly accurate delayed sampled codes is essential for generating signals in the simulator, where its sampling rate should be chosen to satisfy constraints such as Nyquist criteria and integer and non-commensurate properties in order not to cause any distortion of original signals. A high sampling rate increases the accuracy of code delay, but decreases the computational efficiency as well, and vice versa. Therefore, the selected sampling rate should be as low as possible while maintaining a certain level of code delay accuracy. This paper presents the lower limits of the sampling rate for GNSS signal generation simulators. In the simulation, two distinct code generation methods depending on the sampling position are evaluated in terms of accuracy versus computational efficiency to show the lower limit of the sampling rate for several GNSS signals.

Analysis of Double-Differenced Code-Pseudorange Noise Characteristics of GNSS Receiver Combinations using Zero-Baseline Test (영기선 테스트를 이용한 GNSS 수신기 조합별 코드의사거리 이중차분 잡음 특성 분석)

  • Bong-Gyu Park;Kwan-Dong Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.245-256
    • /
    • 2024
  • Following the introduction of civilian navigation, the commercial Global Navigation Satellite System (GNSS) receivers' market has been expanding in various fields such as autonomous driving and smart cities. With improved receiver performance and widespread use of GNSS, the configurations of base and rover receivers are becoming more complex. As a result, user must consider combinations of base stations with different qualities, costs, and performances. To address these issues, we conducted zero-baseline tests to analyze the double-differenced code-pseudorange noise of various receiver combinations, ranging from low- to high-cost. The results showed that the noise varied depending on the receiver combination. Notably, receivers from the same manufacturer exhibited similar noise and positioning errors despite significant price differences. We also found that the double-differenced noise of all receiver combinations was correlated with the Carrier-to-Noise Density Ratio (C/N0), the satellite elevation angle, and the Doppler shift, and it did not perfectly follow a normal distribution. Further analysis based on Modified Allan Deviation (MDEV) showed that different types of noise were observed for each receiver combination and the double-differenced noise and positioning errors have similar statistical characteristics. From this study, the importance of receiver combinations and their various characteristics can be better understood.

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

An Analysis on the Long-Term Variation of the GPS Broadcast Ephemeris Errors (GPS 방송궤도력 오차의 장기간 변화 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.421-428
    • /
    • 2014
  • GPS satellite positions can be obtained from the navigation message transmitted from the GPS satellite. In this paper, the accuracy of broadcast orbit and clock are analyzed by comparing with the NGA precise ephemeris. For analyzing global and local orbit errors in 2004 to 2013, GPS satellite visibilities are calculated in Korea. Local RMS of 3D orbit error and SISRE are 4 cm and 3 cm less than global RMS of 3D orbit errors and SISRE. Orbit and clock errors are calculated for each GPS satellite Block for 10 years. SISRE of Block IIA satellites are 2.8 times greater than Block IIF satellites. The correlation between orbit errors and shadow condition is analyzed. The orbit errors in shadow is 2.1% higher than that in sunlight. Correlation analysis between the orbit errors and solar/geomagnetic index shows that orbit errors has a high correlation with from 2004 to 2008. However, the correlation became low since 2009.

Prediction of Communication Outage Period between Satellite and Earth station Due to Sun Interference

  • Song, Yong-Jun;Kim, Kap-Sung;Jin, Ho;Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2010
  • We developed a computer program to predict solar interference period. To calculate Sun's position, we used DE406 ephemerides and Earth ellipsoid model. The Sun's position error is smaller than 10arcsec. For the verification of the calculation, we used TU media ground station on Seongsu-dong, and MBSAT geostationary communication satellite. We analysis errors, due to satellite perturbation and antenna align. The time error due to antenna align has -35 to +16 seconds at $0.1^{\circ}$, and -27 to +41 seconds at $0.25^{\circ}$. The time errors derived by satellite perturbation has 30 to 60 seconds.

Performance Analysis of GNSS Ephemeris Fault Detection Algorithm Based on Carrier-Phase Measurement (반송파 측정값 기반 GNSS 궤도력 고장 검출 알고리즘 성능 분석)

  • Ahn, Jongsun;Jun, Hyang-Sig;Nam, Gi-Wook;Yeom, Chan-Hong;Lee, Young Jae;Sung, Sangkyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.453-460
    • /
    • 2014
  • We analyze fault detection algorithm of ephemeris included in navigation message, which is one of the GNSS risk factors. This algorithm uses carrier-phase measurement and baseline vector of two reference stations and is alternative method for uncertainty condition of previous ephemeris. Even though same ephemeris fault is occurred, the geometry condition, between baseline vector of reference stations and satellites, effects on performance of algorithm. Also, we introduce the suitable geometry of reference stations, threshold and performance index (MDE : Minimum Detectable Error) in jeju international airport.

A Study on Extracting Boundary Data of Marine Fish Farms Based on Satellite Images (위성영상 기반 해양수산 양식장의 경계 데이터 추출)

  • Seong-hoon Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.877-883
    • /
    • 2023
  • For safe operation of ships and management of marine fisheries farms, the data set that extracts the boundaries of marine fisheries farms can provide information on obstacles in the vessel's navigation path in advance by examining whether it matches the fishing ground permit area. In addition, it can be used to determine whether fish farms are operating to compensate for damage caused by marine accidents, and the relevant local government can use it to manage fishing grounds. It is also highly utilized as basic data to identify obstacles for safe navigation of ships. In this study, Sentinel-2 satellite image data from the European Space Agency (ESA) was used to extract the boundaries of fish farms. From the video image, the fish farm's status data by cycle was divided into five zones: Busan-Ulsan area, Geoje-Changwon area, Goseong-Tongyeong area, and Namhae-Sacheon area. Through the image highlighting process, the farm boundary data and meta data were processed and extracted.

Review of GPS and Galileo Integrity Assurance Procedure (GPS와 Galileo의 무결성 보장 방법 조사)

  • Namkyu Woo;Gihun Nam;Heonho Choi;Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.