• Title/Summary/Keyword: Satellite Launch vehicle

Search Result 219, Processing Time 0.031 seconds

Tracking and Orbit Determination of International Space Station using Radar (레이더를 이용한 국제우주정거장 추적 및 궤도결정)

  • Yu, Ki-Young;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • Increase of space debris makes low earth orbit(LEO) environment more complex day by day and space situation Awareness(SSA) is becoming more important. As an essential part of SSA, space object surveillance and tracking is studied by many countries including America and Europe. And radar system forms the backbone of an space surveillance and tracking. Currently, Korea operates many LEO satellites like KOMPSAT but does not have dedicated radar systems which provide collision surveillance between satellite and space debris. Korea Aerospace Research Institute(KARI) NARO space center operates launch-vehicle tracking radar system in GOHEUNG and JEJU, respectively. In this paper, we describe developing operation concept to track International Space Station(ISS) using NARO radar and results of tracking. Then, we describe ISS orbit determination using radar tracking data. Lastly, orbit determination result is compares with TLE for analyzing effectiveness of orbit determination.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

VERTICAL OZONE DENSITY PROFILING BY UV RADIOMETER ONBOARD KSR-III

  • Hwang Seung-Hyun;Kim Jhoon;Lee Soo-Jin;Kim Kwang-Soo;Ji Ki-Man;Shin Myung-Ho;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.372-375
    • /
    • 2004
  • The UV radiometer payload was launched successfully from the west coastal area of Korea Peninsula aboard KSR-III on 28, Nov 2002. KSR-III was the Korean third generation sounding rocket and was developed as intermediate step to larger space launch vehicle with liquid propulsion engine system. UV radiometer onboard KSR-III consists of UV and visible band optical phototubes to measure the direct solar attenuation during rocket ascending phase. For UV detection, 4 channel of sensors were installed in electronics payload section and each channel has 255, 290, 310nm center wavelengths, respectively. 450nm channel was used as reference for correction of the rocket attitude during the flight. Transmission characteristics of all channels were calibrated precisely prior to the flight test at the Optical Lab. in KARI (Korea Aerospace Research Institute). During a total of 231s flight time, the onboard data telemetered to the ground station in real time. The ozone column density was calculated by this telemetry raw data. From the calculated column density, the vertical ozone profile over Korea Peninsula was obtained with sensor calibration data. Our results had reasonable agreements compared with various observations such as ground Umkhr measurement at Yonsei site, ozonesonde at Pohang site, and satellite measurements of HALOE and POAM. The sensitivity analysis of retrieval algorithm for parameters was performed and it was provided that significant error sources of the retrieval algorithm.

  • PDF

Development Trend of Korean Staged Combustion Cycle Rocket Engine (한국형 다단연소사이클 로켓엔진 개발 동향)

  • Kim, Chae-hyoung;Han, Yeoung Min;Cho, Namkyung;Kim, Seung-Han;Yu, Byungil;Lee, Kwang-Jin;So, Younseok;Woo, Seongphil;Im, Ji-Hyuk;Hwang, Chang Hwan;Lee, Jungho;Kim, Jin-han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.79-87
    • /
    • 2017
  • Korea Aerospace Research Institute has being developed a staged combustion cycle rocket (SCCR) engine with high specific impulse to send a 3-ton class satellite into geostationary orbit while conducted Korean Space Launch Vehicle (KSLV) II project. The SCCR engine is different from the KSLV-II engine, which is open cycle engine using a gas-generator. The SCCR engine with closed cycle is composed of a pre-burner, a turbo pump, and a main combustor. The technology demonstration model (TDM0) was assembled and tested in the 7ton-class engine combustion test facility of Naro Space Center, and the combustion test was successfully conducted. Afterward engine-shaped SCCR engine model (TDM1) is being designed and developed for the next combustion test.

  • PDF

A Mixing Head Integrated, Multi-Ignition Device for Liquid Methane Engine (액체메탄엔진용 믹싱헤드 일체형 다중점화장치)

  • Lim, Byoungjik;Lee, Junseong;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • We are developing a compact ignition device that can provide a multi-ignition capability for an upper stage methane engine of a two staged small satellite launch vehicle. Firstly, the multi-ignition device is designed and built as an integral part of an additively manufactured mixing head. Secondly, the ignition device requires no separate high-pressure vessels to store ignition propellants as they are branched out from the main feed lines for the mixing head. We performed experiments at various levels, including igniter autonomous tests, thrust chamber ignition and combustion tests on the new compact ignition device which is integrated in the thrust chamber of one-tonf class liquid oxygen/liquid methane engine, and confirmed stable ignition performance.

A Study on Improvement on National Legislation for Sustainable Progress of Space Development Project (우주개발사업의 지속발전을 위한 국내입법의 개선방향에 관한 연구)

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.1
    • /
    • pp.97-158
    • /
    • 2010
  • The purpose of this paper is to research on the contents and improvement of national legislations relating to space development in Korea to make the sustainable progress of space development project in Korea. Korea has launched its first satellite KITST-1 in 1992. The National Space Committee has established "The Space Development Promotion Basic Plan" in 2007. The plan addressed the development of total 13 satellites by 2010 and the space launch vehicle by 2020, and the launch of moon exploration spaceship by 2021. Korea has built the space center at Oinarodo, Goheng Province in June 2009. In Korea the first small launch vehicle KSLV-1 was launched at the Naro Space Center in August 2009, and its second launch was made in June 2010. The United Nations has adopted five treaties relating to the development of outer space as follows : The Outer Space Treaty of 1967, the Rescue and Return Agreement of 1968, the Liability Convention of 1972, the Registration Convention of 1974, and the Moon Treaty of 1979. All five treaties has come into force. Korea has ratified the Outer Space Treaty, the Rescue and Return Agreement, the Liability Convention and the Registration Convention excepting the Moon Treaty. Most of development countries have enacted the national legislation relating to the development of our space as follows : The National Aeronautic and Space Act of 1958 and the Commercial Space Act of 1998 in the United States, Outer Space Act of 1986 in England, Establishment Act of National Space Center of 1961 in France, Canadian Space Agency Act of 1990 in Canada, Space Basic Act of 2008 in Japan, and Law on Space Activity of 1993 in Russia. There are currently three national legislations relating to space development in Korea as follows : Aerospace Industry Development Promotion Act of 1987, Outer Space Development Promotion Act of 2005, Outer Space Damage Compensation Act of 2008. The Ministry of Knowledge Economy of Korea has announced the Full Amendment Draft of Aerospace Industry Development Promotion Act in December 2009, and it's main contents are as follows : (1) Changing the title of Act into Aerospace Industry Promotion Act, (2) Newly regulating the definition of air flight test place, etc., (3) Establishment of aerospace industry basic plan, establishment of aerospace industry committee, (4) Project for promoting aerospace industry, (5) Exploration development, international joint development, (6) Cooperative research development, (7) Mutual benefit project, (8) Project for furthering basis of aerospace industry, (9) Activating cluster of aerospace industry, (10) Designation of air flight test place, etc., (11) Abolishing the designation and assistance of specific enterprise, (12) Abolishing the inspection of performance and quality. The Outer Space Development Promotion Act should be revised with regard to the following matters : (1) Overlapping problem in legal system between the Outer Space Development Promotion Act and the Aerospace industry Development promotion Act, (2) Distribution and adjustment problem of the national research development budget for space development between National Space Committee and National Science Technology Committee, (3) Consideration and preservation of environment in space development, (4) Taking the legal action and maintaining the legal system for policy and regulation relating to space development. The Outer Space Damage Compensation Act should be revised with regard to the following matters : (1) Definition of space damage and indirect damage, (2) Currency unit of limit of compensation liability, (3) Joint liability and compensation claim right of launching person of space object, (4) Establishment of Space Damage Compensation Council. In Korea, it will be possible to make a space tourism in 2013, and it is planned to introduce and operate a manned spaceship in 2013. Therefore, it is necessary to develop the policy relating to the promotion of commercial space transportation industry. Also it is necessary to make the proper maintenance of the current Aviation Law and space development-related laws and regulations for the promotion of space transportation industry in Korea.

  • PDF

Development Trend of Korean Staged Combustion Cycle Rocket Engine (한국형 다단연소사이클 로켓엔진 개발 동향)

  • Kim, Chae-hyoung;Han, Yeoung Min;Cho, Namkyung;Kim, Seung-Han;Yu, Byungil;Lee, Kwang-Jin;So, Younseok;Woo, Seongphil;Im, Ji-Hyuk;Hwang, Chang Hwan;Lee, Jungho;Kim, Jin-han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.109-118
    • /
    • 2018
  • Korea Aerospace Research Institute has developed a staged combustion cycle rocket (SCCR) engine with high specific impulse to send a 3-ton class satellite into geostationary orbit while conducting a Korean Space Launch Vehicle (KSLV) II project. The SCCR engine is different from the KSLV-II engine, which is an open cycle engine using a gas-generator. The SCCR engine with a closed cycle engine is composed of a pre-burner, a turbo pump, and a main combustor. The technology demonstration model (TDM0) was assembled and tested in the 7ton-class engine combustion test facility of Naro Space Center, and the combustion test was successfully conducted.

A Study on the Liability for Damage caused by Space Activity - With reference to Relevant Cases - (우주활동에 의하여 발생한 손해배상책임에 관한 연구 - 관련 사례를 중심으로 -)

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.26 no.1
    • /
    • pp.177-213
    • /
    • 2011
  • The purpose of this paper is to research on the liability and cases for space damage with reference to the space activity under the international space treaty and national space law of major countries. The United Nations has adopted two treaties relating to the liability for space damage as follows: the Outer Space Treaty of 1967 and the Liability Convention of 1972. Korea has enacted the Outer Space Damage Compensation Act of 2008 relating to the liability for space damages. The Outer Space Treaty of 1967 regulates the international responsibility for national activities in outer space, and the national tort liability for damage by space launching object. The Liability Convention of 1972 regulates the absolute liability by a launching state, the faulty liability by a launching state, the joint and several liability by a launching state, the person claiming for compensation, the claim method for compensation, the claim period of compensation, the claim for compensation and local remedy, the compensation amount for damage by a launching state, and the establishment of the Claims Commission. The Outer Space Damage Compensation Act of 2008 in Korea regulates the definition of space damage, the relation of the Outer Space Damage Compensation Act and the international treaty, the non-faulty liability for damage by a launching person, the concentration of liability and recourse by a launching person, the exclusion of application of the Product Liability Act, the limit amount of the liability for damage by a launching person, the cover of the liability insurance by a launching person, the measures and assistance by the government in case of occurring the space damage, and the exercise period of the claim right of compensation for damage. There are several cases with reference to the liability for damage caused by space accidents as follows: the Collision between Iridium 33 and Cosmos 2251, the Disintegration of Cosmos 954 over Canadian Territory, the Failure of Satellite Launching by Martin Marietta, and the Malfunctioning of Westar VI Satellite. In the disputes and lawsuits due to such space accidents, the problems relating to the liability for space damage have been settled by the application of absolute(strict) liability principle or faulty liability principle. The Liability Convention of 1972 should be improved as follows: the clear definition in respect of the claimer of compensation for damage, the measure in respect of the enforcement of decision by the Claims Commission. The Outer Space Damage Compensation Act of 2008 in Korea should be improved as follows: the inclusion of indirect damage into the definition of space damage, the change of the currency unit of the limit amount of liability for damage, the establishment of joint and several liability and recourse right for damage by space joint launching person, and the establishment of the Space Damage Compensation Review Commission. Korea has built the space center at Oinarodo, Goheung Province in June 2009. Korea has launched the first small launch vehicle KSLV-1 at the Naro Space Center in August 2009 and June 2010. In Korea, it will be the possibility to be occurred the problems relating to the international responsibility and the liability for space damage in the course of space activity. Accordingly the Korean government and launching organization should make the legal and systematic policy to cope with such problems.

  • PDF

Legal Study for the KSLV launching - Products & Third Party Liability - (KSLV발사에 따른 제작 및 제3자피해 책임에 대한 우주법적 소고)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.21 no.1
    • /
    • pp.169-189
    • /
    • 2006
  • In 2007, KSLV(Korea Small Launching Vehicle) that we made at Goheung National Space Center is going to launch and promotes of our space exploration systematically and 'Space Exploration Promotion Act' was enter into force. 'Space Exploration Promotion Act' article 3, section 1, as is prescribing "Korean government keeps the space treaties contracted with other countries and international organizations and pursues after peaceful uses of outer space." The representative international treaties are Outer Space Treaty (1967) and Liability Convention (1972) etc. In Liability convention article 2, "A launching State shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The important content of the art. 2 is the responsible entity is the 'State' not the 'Company'. According by Korean Space Exploration Act art. 14, person who launches space objects according to art. 8 and art. 11 must bear the liability for damages owing to space accidents of the space objects. Could Korean government apply the Products Liability Act which is enter into force from July 1, 2002 to space launching person? And what is the contact type between Korea Aerospace Research Institute(KARl) and Russia manufacturer. Is that a Co-Development contract or Licence Product contract? And there is no exemption clause to waive the Russia manufacturer's liability which we could find it from other similar contract condition. If there is no exemption clause to the Russia manufacturer, could we apply the Korean Products Liability Act to Russia one? The most important legal point is whether we could apply the Korean Products Liability Act to the main component company. According by the art. 17 of the contract between KARl and the company, KARl already apply the Products Liability Act to the main component company. For reference, we need to examine the Appalachian Insurance co. v. McDonnell Douglas case, this case is that long distance electricity communication satellite of Western Union Telegraph company possessions fails on track entry. In Western Union's insurance company supplied to Western Union with insurance of $ 105 millions, which has the satellite regard as entirely damage. Five insurance companies -Appalachian insurance company, Commonwealth insurance company, Industrial Indemnity, Mutual Marine Office, Northbrook Excess & Surplus insurance company- went to court against McDonnell Douglases, Morton Thiokol and Hitco company to inquire for fault and strict liability of product. By the Appalachian Insurance co. v. McDonnell Douglas case, KARl should waiver the main component's product liability burden. And we could study the possibility of the adapt 'Government Contractor Defense' theory to the main component company.

  • PDF