• 제목/요약/키워드: Satellite Launch vehicle

검색결과 219건 처리시간 0.028초

Launch Site Activities for the Launch of an Earth Observation Satellite

  • 임정흠
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.195.1-195.1
    • /
    • 2012
  • Korea Aerospace Research Institute has developed an earth observation satellite whose primary mission objective is to provide high resolution electro optical earth images for Geographical Information Systems (GIS) establishment and the applications for environmental, agriculture and ocean monitoring. It was successfully launched into its mission orbit by using a commercial launch vehicle on 18th of May, 2012. This paper describes a series of launch activity at the launch site including its transportation to the launch site. Before conducting the launch site operation, satellite operation plane was prepared. Combining the satellite operation plan and launch vehicle activities, an integrated launch site operation plan and schedule have been drawn up. After arrival of the spacecraft at the launch site, post-ship check out has been conducted. And then it was fuel loaded and integrated with launch vehicle hardware. After completion of final electrical check out, count down procedure was executed. on 18th of May, it was launched into the space and was separated from the launch vehicle as planned. About 3 months of early operation and calibration/validation, now the satellite is conducting its normal mission.

  • PDF

Launch Vehicle Telemetry MUX Test by using the Spacecraft Simulator

  • Won, Young-Jin;Lee, Jin-Ho;Yun, Seok-Teak;Kim, Jin-Hee;Lee, Sang-Ryool
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.46.3-46.3
    • /
    • 2009
  • The SAR (Synthetic Aperture Radar) satellite has the advantage of implementing the imaging mission even though it is night time, cloudy weather, and all weather conditions, which is different from the satellite with the optical payload. This is the reason why the SAR satellite comes into the spotlight in the observation satellite field. The Korea Aerospace Research Institute (KARI) has been developing the first Korean SAR satellite and is currently integrating and testing the Flight Model. For the launch vehicle service, KARI finalized the selection of the launch vehicle service provider and finished Critical Design Review (CDR) of the interface between the bus and the launch vehicle. KARI and launch vehicle service provider also finished the test of the telemetry interface between the bus and the launch vehicle. The test of the telemetry interface has the purpose of checking the interface of the telemetry which is the SOH(State-of-Health) of the satellite in an early launch stage. For this test, KARI has finished the development of the spacecraft simulator which is composed of the bus simulator to generate the analog telemetry and the launch vehicle simulator to gather the telemetry. In this research, the result of the hardware implementation and the software implementation for the spacecraft simulator were described. Finally the results of the launch vehicle telemetry MUX test which were performed at the launch vehicle provider's design office by using the spacecraft simulator were summarized. It is expected that this simulator will be used in the next test after the manufacture of the launch vehicle.

  • PDF

연성하중해석을 통한 위성구조체의 구조안정성 검증 연구 (A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis)

  • 김경원;김선원;임재혁;김창호;황도순
    • 한국위성정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.63-68
    • /
    • 2010
  • 인공위성 구조체는 발사환경과 궤도환경하에서 탑재체 및 여러 구동기 등을 안전하게 지지할 수 있도록 설계되어야 한다. 위성체의 형상설계가 이루어지면 상세설계를 위하여 발사체에서 공급하는 규격에 의한 준정적하중을 사용하여 구조해석을 수행한다. 이 때 준정적하중을 이용하여 설계된 위성체의 구조 건정성을 확인하기 위하여 발사체 업체는 위성체와 발사체를 연성한 후 연성하중해석을 수행한다. 현재 개발중인 위성체의 경우, 연성하중해석을 수행하기 위하여 위성체 모델을 Craig-Bampton 모델로 축약한 후, 발사체 제작업체로 전달하였다. 발사체 제작업체에서는 위성체 모델과 발사체 모델을 이용하여 연성하중해석을 수행하였으며, 가속도 결과와 변위결과를 계산하여 이를 전달하였다. 전달받은 가속도 결과와 변위결과로부터 위성체는 안전하게 설계되었으며, 위성체 내/외부에서 간섭이나 충돌의 위험성이 없다는 것을 확인하였다.

The Transition Effect of Korea's Space Development

  • Kim, Jong-bum
    • International Journal of Advanced Culture Technology
    • /
    • 제6권2호
    • /
    • pp.80-85
    • /
    • 2018
  • In the 1990s, South Korea recently launched Space Development and is pushing for a step toward Space. In the Space Launch Vehicle field, the development of Practical satellite type Launch Vehicle (Korea Space Launch Vehicle II) has progressed to the stage of proprietary development, and in the field of Satellite development, they also have a great deal of competitiveness. This study will be a shortcut to rediscovering our potential and looking for breakthroughs by reviewing and re-examining the effects of past Space development.

A Study on the Satellite Launch Vehicle Separation Detection Interface to Improve the Reliability of the Launch and Early Operation Phase

  • Lee, Nayoung;Kwon, Dong-young;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Cheon, Yee-Jin
    • 항공우주시스템공학회지
    • /
    • 제15권4호
    • /
    • pp.57-63
    • /
    • 2021
  • The launch vehicle (LV) separation detection interface of the satellite, which is designed to initiate the launch and early operation phase (LEOP) for S-band data transmission and the solar array deployment after the LV separation, is one of the hazard items at the launch site. Therefore, this interface should satisfy the single-fault tolerance requirement for the range safety. In this paper, we discuss the LV separation detection interfaces for two different satellite launch configurations and propose a method to guarantee for the satellite to start the LEOP even under the emergency case such as a partial separation from the LV. Furthermore, the proposed method meets the range safety requirement of the launch site. As this method only changes the external harness configuration of the satellite, it increases the reliability of the satellite early operation without any modification of the existing internal logics to detect the separation event.

Analysis of payload compartment venting of satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.437-448
    • /
    • 2017
  • The problem of flow through the vent is formulated as an unsteady, nonlinear, ordinary differential equation and solved using Runge-Kutta method to obtain pressure inside payload faring. An inverse problem for prediction of the discharge coefficient is presented employing measured internal pressure of the payload fairing during the ascent phase of a satellite launch vehicle. A controlled random search method is used to estimate the discharge coefficient from the measured transient pressure history during the ascent period of the launch vehicle. The algorithm predicts the discharge coefficient stepwise with function of Mach number. The estimated values of the discharge coefficients are in good agreement with differential pressure measured during the flight of typical satellite launch vehicle.

해외 발사체 상단의 충돌 및 오염 회피 기동 분석 (Foreign Launch Vehicle Upper Stage Collision and Contamination Avoidance Maneuver Analysis)

  • 박창수;조상범;송은정;노웅래
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.194-201
    • /
    • 2008
  • 발사체 상단은 위성과 분리된 이후 대부분 충돌 및 오염 회피 기동을 수행한다. 이러한 기동을 통하여 위성은 안전하게 궤도에 안착되고 발사체는 위성으로부터 오염을 최소화하며 멀어지게 된다. 본 논문에서는 해외 여러 발사체들의 위성 분리와 충돌 및 오염 회피 기동을 분석하였고 이를 토대로 KSLV-I 상단에 회피 기동에 의한 위성의 오염도 허용 기준을 제시하였다.

  • PDF

Range Safety Activities for the Launch of an Earth Observation Satellite

  • 임정흠
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.194.2-194.2
    • /
    • 2012
  • Korea Aerospace Research Institute has developed an earth observation satellite and it was launched into its orbit in 2012 by using a foreign commercial launch vehicle. The launch site authority has imposed safety requirements to the spacecraft developer to ensure the safety of the personnel and to protect launch vehicle, spacecraft and facilities from accidents associated with the satellite operation at the launch site. This paper describes the range safety activities implemented for the satellite and supporting equipments during the whole phase of their design, manufacturing/test and operation at the launch site. To ensure the integrated requirements for safety management and design, system safety program plan has been developed. And based upon the plan, spacecraft developer conducted hazard analysis to identify and establish safety requirements to reflect in designs, procedures, operations. The result of the hazard analysis has been complied into safety data packages and it was reviewed by launch site review board at the safety reviews and finally it was approved to launch.

  • PDF

통신해양기상위성과 정지궤도 발사체와의 전자파 적합성 해석 (Preliminary EMC Analysis between the COMS and the GEO Launch Vehicles)

  • 김의찬;이흥호
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.439-445
    • /
    • 2008
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and Geostationary Earth Orbit (GEO) launch vehicles in the frequency range [1MHz-47MHz] is described. The considered launch vehicles are arian V, sea Launch, land Launch, atlas III&V, delta IV, proton M/breeze M, soyuz, HII-A and Angara. The launch vehicle Radiated Emission (RE) specifications have been compared to COMS satellite Radiated Susceptibility (RS) limits. The COMS RS limits are the RS qualification levels of COMS units during launch. As a result, The radiated emission levels of arian V, sea launch, atlas III&V, delta IV, proton M/breeze M, HII-A and angara are compliant with COMS RS limits. The negative margins appear between land launch or soyuz launch vehicle RE and COMS RS. Then, if the land launch or soyuz is chosen by the customer, The tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles specifications.

정지궤도위성 발사위치와 궤도투입에 관한 고찰 (Geostationary Satellite Launch Site and Orbit Injection)

  • 김동선
    • 항공우주시스템공학회지
    • /
    • 제18권3호
    • /
    • pp.27-33
    • /
    • 2024
  • 누리호의 성공과 차세대 우주발사체의 개발 목표를 통하여 국내 정지궤도위성 발사능력은 1톤에서 3.7톤으로 향상될 것으로 기대되며 화성, 소행성 등의 우주탐사에도 1톤 이상의 실질적인 능력을 제공해 줄 수 있을 것으로 예측된다. 고흥 우주발사장은 태양 동기궤도 소형위성에 최적화되어 있으며 타국의 영공을 침범하지 않아야 된다는 필수적인 전제조건으로 인하여 정지궤도위성 발사장으로는 다소 부족한 면이 존재한다. 초기 궤도 투입상태로부터 궤도면 회전을 위한 에너지의 증가가 필수적이며 운용 측면에서의 복잡성과 함께 경제성의 감소요인이 된다. 그러므로 차세대 우주발사체의 개발과 병행하여 지구 적도부근의 해외 지상발사장 또는 해상발사지점의 획득과 최적화된 정지궤도위성 투입에 관한 궤도 구성에 관한 연구가 계속되어야 한다.