• Title/Summary/Keyword: Satellite Images

Search Result 1,887, Processing Time 0.03 seconds

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

A Scheme for Matching Satellite Images Using SIFT (SIFT를 이용한 위성사진의 정합기법)

  • Kang, Suk-Chen;Whoang, In-Teck;Choi, Kwang-Nam
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.13-23
    • /
    • 2009
  • In this paper we propose an approach for localizing objects in satellite images. Our method exploits matching features based on description vectors. We applied Scale Invariant Feature Transform (SIFT) to object localization. First, we find keypoints of the satellite images and the objects and generate description vectors of the keypoints. Next, we calculate the similarity between description vectors, and obtain matched keypoints. Finally, we weight the adjacent pixels to the keypoints and determine the location of the matched object. The experiments of object localization by using SIFT show good results on various scale and affine transformed images. In this paper the proposed methods use Google Earth satellite images.

  • PDF

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

High-Resolution Satellite Image Super-Resolution Using Image Degradation Model with MTF-Based Filters

  • Minkyung Chung;Minyoung Jung;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.395-407
    • /
    • 2023
  • Super-resolution (SR) has great significance in image processing because it enables downstream vision tasks with high spatial resolution. Recently, SR studies have adopted deep learning networks and achieved remarkable SR performance compared to conventional example-based methods. Deep-learning-based SR models generally require low-resolution (LR) images and the corresponding high-resolution (HR) images as training dataset. Due to the difficulties in obtaining real-world LR-HR datasets, most SR models have used only HR images and generated LR images with predefined degradation such as bicubic downsampling. However, SR models trained on simple image degradation do not reflect the properties of the images and often result in deteriorated SR qualities when applied to real-world images. In this study, we propose an image degradation model for HR satellite images based on the modulation transfer function (MTF) of an imaging sensor. Because the proposed method determines the image degradation based on the sensor properties, it is more suitable for training SR models on remote sensing images. Experimental results on HR satellite image datasets demonstrated the effectiveness of applying MTF-based filters to construct a more realistic LR-HR training dataset.

In-Orbit Performance Result of KITSAT-3 Earth Imaging System (MEIS)

  • Yoo, Sang-Keun;Kim, Ee-Eul;Chang, Hyon-Sock;Kang, Kyung-In;Choi, Soon-Dal
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.37-42
    • /
    • 1999
  • A compact imaging system, the Multi-spectral Earth Imaging System (MEIS) was developed and operated on an engineering test satellite, KITSAT-3 at the orbital altitude of 720 km. The MEIS takes multi-spectral images of the earth's surface with the swath width of 48 km and the ground sampling distance of 13.8 m in three spectral bands. A brief technical description of the KITSAT-3 MEIS and the result from its initial operation since early June, 1999 are presented. The quality of images produced by the KITSAT-3 MEIS was found comparable to that of images from existing commercial earth observation satellites from its preliminary assessment.

  • PDF

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

The matching algorithm with the satellite images using a dynamic triangular image warping method (동적 삼각형 영상 왜곡 보상 방법을 이용한 위성 영상 정합 알고리듬)

  • Jeon, Byung-Min;Lee, Heung-Jae;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2209-2211
    • /
    • 1998
  • This paper presents the matching algorithm with the satellite images using the image warping method. Two stereo images, which are used for the DEM(Digital Elevation Model) extraction, are generally distorted because the images are acquired at different locations and angles. Therefore, the matching Process can't be executed with the original images. To solve this problem, a dynamic triangular image warping method is proposed. At first, the initial matching is executed with seed point, and then, using the matched points from the initial matching, the distorted images is compensated. We experimented this algorithm with the parts of the $6000{\times}6000$ SPOT satellite images. The experiment results show this algorithm is superior to other warping algorithm.

  • PDF

Digital Elevation Model Extraction Using KOMPSAT Images

  • Im, Hyung-Deuk;Ye, Chul-Soo;Lee, Kwae-Hi
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.347-353
    • /
    • 2000
  • The purpose of this paper is to extract DEM (Digital Elevation Model) using KOMPSAT images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the result of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. Area based matching method is used to find the corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation information obtained from sensor modeling and the disparity from the stereo matching. In experiment, the KOMPSAT images, 2592$\times$2796 panchromatic images are used to extract DEM. The experiment result show the DEM using KOMPSAT images.

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

Motion analysis within non-rigid body objects in satellite images using least squares matching

  • Hasanlou M.;Saradjian M.R.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.47-51
    • /
    • 2005
  • Using satellite images, an optimal solution to water motion has been presented in this study. Since temperature patterns are suitable tracers in water motion, Sea Surface Temperature (SST) images of Caspian Sea taken by MODIS sensor on board Terra satellite have been used in this study. Two daily SST images with 24 hours time interval are used as input data. Computation of templates correspondence between pairs of images is crucial within motion algorithms using non-rigid body objects. Image matching methods have been applied to estimate water body motion within the two SST images. The least squares matching technique, as a flexible technique for most data matching problems, offers an optimal spatial solution for the motion estimation. The algorithm allows for simultaneous local radiometric correction and local geometrical image orientation estimation. Actually, the correspondence between the two image templates is modeled both geometrically and radiometrically. Geometric component of the model includes six geometric transformation parameters and radiometric component of the model includes two radiometric transformation parameters. Using the algorithm, the parameters are automatically corrected, optimized and assessed iteratively by the least squares algorithm. The method used in this study, has presented more efficient and robust solution compared to the traditional motion estimation schemes.

  • PDF