• Title/Summary/Keyword: Satellite Image Data

Search Result 1,193, Processing Time 0.031 seconds

Characteristics of Greenup and Senescence for Evapotranspiration in Gyeongan Watershed Using Landsat Imagery (Landsat 인공위성 이미지를 이용한 경안천 유역 증발산의 생장기와 휴면기 분포 특성 분석)

  • Choi, Minha;Hwang, Kyotaek;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.29-36
    • /
    • 2011
  • Evapotranspiration (ET) from the various surfaces needs to be understood because it is a crucial hydrological factor to grasp interaction between the land surface and the atmosphere. A traditional way of estimating it, which is calculating it empirically using lysimeter and pan evaporation observations, has a limitation that the measurements represent only point values. However, these measurements cannot describe ET because it is easily affected by outer circumstances. Thus, remote sensing technology was applied to estimate spatial distribution of ET. In this study, we estimated major components of energy balance method (i.e. net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) and ET as a map using Mapping Evapo-Transpiration with Internalized Calibration (METRIC) satellite-based image processing model. This model was run using Landsat imagery of Gyeongan watershed in Korea on Feb 1, 2003 and Sep 13, 2006. Basic statistical analyses were also conducted. The estimated mean daily ETs had respectively 22% and 11% of errors with pan evaporation data acquired from the Suwon Weather Station. This result represented similar distribution compared with previous studies and confirmed that the METRIC algorithm had high reliability in the watershed. In addition, ET distribution of each land use type was separately examined. As a result, it was identified that vegetation density had dominant impacts on distribution of ET. Seasonally, ET in a growing season represented significantly higher than in a dormant season due to more active transpiration. The ET maps will be useful to analyze how ET behaves along with the circumstantial conditions; land cover classification, vegetation density, elevation, topography.

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.

Evaluating Objective Landscape of Rural Region Using Additive Integration Index Calculation Model - Focused on Seondong Region, Gochang-Gun, Jeollabuk-Do, Korea - (가법형 통합지수 산정모형을 이용한 농촌지역의 객관적 경관 평가 - 전북 고창선동권역을 대상으로 -)

  • Ban, Yong-Un;Lee, Yong-Hoon;Na, Sang-Il;Youn, Joong-Shuk;Baek, Jong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.69-81
    • /
    • 2009
  • This study was intended to evaluate the objective landscape of rural region using an additive integration index method in the Seondong region of Gochang-gun, Jeollabuk-do, Korea. This study consisted of the following three steps. First, this study developed an additive integration index calculation model for landscape assessment based on indicators and weight to each space type in accordance with three landscape fields which were developed by the expert Delphi method. Second, this study used NDVI (Normalized Difference Vegetation Index) and permeable area rate, which were available from high resolution satellite image, to calculate the green naturality degree, area rate, and building coverage respectively. Third, this study has calculated the landscape assessment index of rural regions using an additive integration index method made of assessment data and weight for each indicator. This study has found the following results: 1) landscape level was very poor in all 6 types of space, marking grade five; 2) while the highest level of natural landscape and mixed landscape was grade two, that of artificial landscape was grade five; 3) based on objective landscape, grade five showed the highest frequency, and grade one, two, three, and four followed in that order.

Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kwak, Han-Bin;Kwak, Doo-Ahn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.3-12
    • /
    • 2010
  • In previous studies, the digital measurement systems and analysis algorithms were developed by using the related techniques, such as the aerial photograph detection and high resolution satellite image process. However, these studies were limited in 2-dimensional geo-processing. Therefore, it is necessary to apply the 3-dimensional spatial information and coordinate system for higher accuracy in recognizing and locating of geo-features. The objective of this study was to develop a stochastic algorithm for the optimal sensor placement using the 3-dimensional spatial analysis method. The 3-dimensional information of the LiDAR was applied in the sensor field algorithm based on 2- and/or 3-dimensional gridded points. This study was conducted with three case studies using the optimal sensor placement algorithms; the first case was based on 2-dimensional space without obstacles(2D-non obstacles), the second case was based on 2-dimensional space with obstacles(2D-obstacles), and lastly, the third case was based on 3-dimensional space with obstacles(3D-obstacles). Finally, this study suggested the methodology for the optimal sensor placement - especially, for ground-settled sensors - using the LiDAR data, and it showed the possibility of algorithm application in the information collection using sensors.

Investigation of Water Leakage in Seosan A-Region Sea Wall using Integrated Analysis of Remote Sensing, Electrical Resistivity Survey, Electromagnetic Survey, and Borehole Survey (원격탐사, 전기탐사, 전자기탐사 및 시추공영상의 융합적 분석을 통한 서산지역 방조제 누수구역 판별)

  • Hong, Seong-In;Lee, Dongik;Baek, Gwanghyun;Yoo, Youngcheol;Lim, Kookmook;Yu, Jaehyung
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.105-121
    • /
    • 2013
  • This study introduces integrated approach on detection of a leakage in a sea wall based on remote sensing, electric resistivity survey, electromagnetic survey, and borehole survey for the Seosan A-Region sea wall. The satellite temperature distribution from Landsat ETM+ data identifies water leakage distribution and period by analyzing temperature mixing patterns between sea water and fresh water. Electric resistivity survey provides both horizontal and vertical anomaly distributions over the sea wall showing below average electric resistivity. Electromagnetic survey(electrical conductivity survey) reveals the potential possible leakage areas with minimal background impact by comparing electrical conductivity values between high and low tides. Borehole image processing system confirmed the locations of anomalies identified from the other survey methods and distributions of vertical fracture zones. The integrated approach identified 41.7% of the sea wall being the most probable area vulnerable to water leakage and effectively approximated both horizontal and vertical distribution of water leakage. The integrated analysis of remote sensing, electric resistivity survey, electromagnetic survey and borehole survey is considered to be an optimal method in identifying water leakage distribution, period, and extent of fractures knowledged from the boreholes.

Analysis of a Sea Fog Using Ocean-air Observation Data in the Mid-Yellow Sea off Korea (해양기상 관측자료를 이용한 서해 중부해역 해무 분석)

  • Oh, Hee-Jin;Lee, Ho-Man;Seo, Tae-Gun;Youn, Yong-Hoon;Kim, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.303-314
    • /
    • 2003
  • Ocean-air observation using an Automatic Weather Station (AWS) and Conductivity Temperature Depth (CTD) was conducted in the Mid-Yellow Sea off Korea during 8-10 July 2002. A water mass lower than 17$^{\circ}C$ around the Taean peninsula and a tidal front between 36$^{\circ}$20'N and 36$^{\circ}$30'N were observed. The horizontal distribution of air temperature was similar to that of sea surface temperature (SST). Hourly observation around Dukjuk island showed the cold and saline southwesterly and the warm and fresh northeasterly in phase with tidal current. Sea fogs two times formed at 2300 LST 8-0130 LST 9, and 0300-0600 LST 9 July 2002 during the observation period, respectively. During the initial stage of fogs, winds became northeasterly at the speed of 2-4m/s$^{-1}$, and air temperature dropped to 18$^{\circ}C$, as the North Pacific High weakened. The satellite image indicated that sea fogs formed over warm water in the western Yellow Sea and moved eastward toward the observation site, which could be called a steam fog. The fogs dissipated when wind speed and air temperature increased.

A Shallow Water Front and Water Quality in Chinhae Bay (진해만에 형성되는 천해전선과 수질분포)

  • Kum, Cha-Kyum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.2
    • /
    • pp.86-96
    • /
    • 1997
  • In order to investigate the formation of a shallow water front and its relation to water quality distributions, oceanographic measurements were made, and the numerical computations of the Simpson-Hunter stratification parameter log(H/U$^3$) were performed. It is shown from satellite image and hydrographic data that the shallow water front is formed near the northern Kaduk channel, and the stratification parameter log(H/U$^3$) near the front is in a range of 2.0-2.5. Measured COD (Chemical Oxygen Demand) concentrations in offshore region of the front and in the western part of the bay are below 2.0 mg/1. whereas the concentrations in Masan Bay located in the northern inside of the frontal zone are high as 3.0-5.5 mg/1. COD concentrations decrease gradually from Masan Bay toward the offshore due to the dilution by strong water mixing. Anoxic and hypoxic water masses at the bottom layer in summcr occur in the western part of Chinhae Bay and in Masan Bay, and DO (Dissolved Oxygen) concentrations become low with increasing the stratification parameter. DO concentrations outside the front are more than about 4.0 mg/1, whereas the concentrations inside the front are low. The shallow water front plays a significant role for material transport from coastal area to oceanic area, and the frontal region seems to be important physical and chemical boundaries.

  • PDF

RPC Model Generation from the Physical Sensor Model (영상의 물리적 센서모델을 이용한 RPC 모델 추출)

  • Kim, Hye-Jin;Kim, Jae-Bin;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.21-27
    • /
    • 2003
  • The rational polynomial coefficients(RPC) model is a generalized sensor model that is used as an alternative for the physical sensor model for IKONOS-2 and QuickBird. As the number of sensors increases along with greater complexity, and as the need for standard sensor model has become important, the applicability of the RPC model is also increasing. The RPC model can be substituted for all sensor models, such as the projective camera the linear pushbroom sensor and the SAR This paper is aimed at generating a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects $510{\sim}730nm$ panchromatic images with a ground sample distance (GSD) of 6.6m and a swath width of 17 km by pushbroom scanning. We generated the RPC from a physical sensor model of KOMPSAT-1 and aerial photography. The iterative least square solution based on Levenberg-Marquardt algorithm is used to estimate the RPC. In addition, data normalization and regularization are applied to improve the accuracy and minimize noise. And the accuracy of the test was evaluated based on the 2-D image coordinates. From this test, we were able to find that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

Detection of Forest Fire and NBR Mis-classified Pixel Using Multi-temporal Sentinel-2A Images (다시기 Sentinel-2A 영상을 활용한 산불피해 변화탐지 및 NBR 오분류 픽셀 탐지)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1107-1115
    • /
    • 2019
  • Satellite data play a major role in supporting knowledge about forest fire by delivering rapid information to map areas damaged. This study, we used 7 Sentinel-2A images to detect change area in forests of Sokcho on April 4, 2019. The process of classify forest fire severity used 7 levels from Sentinel-2A dNBR(differenced Normalized Burn Ratio). In the process of classifying forest fire damage areas, the study selected three areas with high regrowth of vegetation level and conducted a detailed spatial analysis of the areas concerned. The results of dNBR analysis, regrowth of coniferous forest was greater than broad-leaf forest, but NDVI showed the lowest level of vegetation. This is the error of dNBR classification of dNBR. The results of dNBR time series, an area of forest fire damage decreased to a large extent between April 20th and May 3rd. This is an example of the regrowth by developing rare-plants and recovering broad-leaf plants vegetation. The results showed that change area was detected through the change detection of danage area by forest category and the classification errors of the coniferous forest were reached through the comparison of NDVI and dNBR. Therefore, the need to improve the precision Korean forest fire damage rating table accompanied by field investigations was suggested during the image classification process through dNBR.

Waterbody Detection from Sentinel-2 Images Using NDWI: A Case of Hwanggang Dam in North Korea (Sentinel-2 기반 NDWI를 이용한 수체 탐지 연구: 북한 황강댐을 사례로)

  • Kye, Changwoo;Shin, Dae-Kyu;Yi, Jonghyuk;Kim, Jingyeom
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1207-1214
    • /
    • 2021
  • In thisletter, we developed technology which can exclude effect of cloudsto perform remote waterbody detection based on Sentinel-2 optical satellite imagery to calculate the area of ungauged reservoirs and applied to the Hwanggang dam reservoir, a representative ungauged reservoir, to verify usability. The remote waterbody detection technology calculates the cloud blocking ratio by comparing the cloud boundary in the Sentinel-2 imagery and the reservoir boundary first. Next, itselects data whose cloud blocking ratio does not exceed a specific value and calculates NDWI (Normalized Difference Water Index) with selected imagery. In last, it calculatesthe area of the reservoir by counting the number of grids which have NDWI value considered as waterbody within the boundary of the target reservoir and correcting with cloud blocking ratio. To determine cloud blocking ratio threshold forselecting image, we performed the area calculation of Hwanggang dam reservoir from July 2018 to October 2021. As a result, when the cloud blocking ratio threshold wasset 10%, we confirmed that the result with large error due to clouds were filtered well and obtained 114 results that can show changes in Hwanggang dam reservoir area among 220 images.