• 제목/요약/키워드: Satellite Control

검색결과 1,490건 처리시간 0.031초

KASS 위성통신국 RF시스템 감시제어장치 설계 (The Design of Monitoring & Control(M&C) for KUS RFS in KASS)

  • 김태희;신천식
    • 한국위성정보통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.50-55
    • /
    • 2017
  • 본 논문에서 한국형 위성보정 시스템(KASS :Korea Augmentation Satellite System)을 구성하고 있는 위성통신국(KUS : KASS Uplink Station)의 RF시스템 감시제어장치에 대한 설계를 기술하였다. 한국형 위성보정 시스템은 KASS라 명명되어 APV-1급 SoL 서비스 수준의 SBAS 시스템 개발과 CAT-1급 시험운영 기술 개발을 목표로 한다. 위성통신국 RF 시스템의 감시제어장치에 대해 소프트웨어 및 하드웨어 개발 환경, 감시제어장치의 기능 및 알고리즘, 감시제어장치의 구조 및 사용자 인터페이스를 설계하였다. 감시제어장치 설계에 있어 이미 개발 활용되고 있는 통신해양기상위성 및 무궁화위성 5A/7호 관제시스템의 감시제어장치 설계를 활용하여 시스템의 안정도 및 신뢰성을 확보하였다. 또한 실제 운영자의 요구에 의한 사용자 인터페이스를 보다 편리하게 제공할 수 있도록 하였다.

접촉궤도요소로부터 변환된 NORAD TLE를 이용한 정지위성의 안테나 포인팅 (ANTENNA POINTING TO THE GEO SATELLITE USING CONVERTED NORAD TLE FROM OSCULATING ORBITAL ELEMENTS)

  • 이병선;김해연;황유라;김재훈
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권2호
    • /
    • pp.145-154
    • /
    • 2007
  • 접촉 케플러 궤도요소로부터 변환된 NORAD TLE를 정지궤도 위성의 안테나 포인팅에 직접 사용하기 위한 분석을 수행하였다. 일주일에 한번씩 동서방향과 남북방향의 위치유지를 위한 궤도조정을 수행하고 하루에 두 번씩 추력기를 이용한 모멘텀 덤핑을 통해서 궤도가 계속 변하는 통신해양기상 위성에 대해서 변환된 NORAD TLE를 이용한 안테나 포인팅 오프셋 각을 계산하여 위성신호를 수신할 수 있는지 검토하였다. 이를 통해 변환된 NORAD TLE를 사용하여 위성 관제시스템의 안테나 포인팅에 관련된 인터페이스를 간단하게 수행할 수 있음을 보였다. 또한 이심률이 큰 천이궤도에 있어서 위성의 평균 근점각에 따른 변환된 NORAD TLE 값의 차이를 분석하여 천이궤도의 원지점 근처에서의 NORAD TLE 변환 값이 더 좋은 결과를 나타내는 것을 알 수 있었다.

위성 PEP시스템에서 ACM 지원을 위한 적응형 TCP 혼잡제어기법 (Adaptive Congestion Control Scheme of TCP for Supporting ACM in Satellite PEP System)

  • 박만규;강동배;오덕길
    • 한국위성정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2013
  • 최근 위성 통신 시스템은 링크 가용도와 대역폭 효율을 증대시키기 위해 ACM(Adaptive Coding and Modulation) 기술을 사용하고 있지만, PEP(Performance Enhancing Proxy)에서 동작하는 TCP는 ACM 동작에 따라 변경된 물리계층 전송능력을 감지하지 못하고 작아진 BDP (Bandwidth Delay Product) 네트워크에 혼잡을 발생 시킨다. 본 논문에서는 ACM과 PEP를 사용할 때 발생되는 문제점을 극복하여 PEP의 성능을 향상시키는 기법을 제안한다. 이를 위해 ACM기능을 지원하는 물리/MAC(링크)계층 모듈과 전송계층 모듈인 TCP 간에 정보 전달 메시지를 적용하여 물리/MAC(링크)계층의 정보가 TCP에 전달되도록 하여 MODCOD (Modulation and Coding)에 따라 변경되는 물리계층 대역폭을 고려한 적응적인 TCP 혼잡제어를 수행하도록 하였다. 제안한 기법에 대해서 ns-2를 이용한 모의시험 결과 물리계층과 전송계층간의 전송 속도를 적응적으로 정합시킴으로써 네트워크의 혼잡을 미리 방지하고 최적화된 혼잡제어를 수행함으로써 PEP 성능을 향상 시킬 수 있음을 보였다.

Controller Design using Sliding Mode Techniques for Satellite Formation Flying

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho;Jo, Jeong-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.41-41
    • /
    • 2003
  • Satellite formation flying is currently an active area of research in the aerospace engineering. There are many categories for this research such as the determination of initial conditions, formation keeping, configuration and reconfiguration. In this study, a tracking controller using sliding mode techniques is designed to control a satellite for the satellite formation flying. In general, Hill's equations are used to describe the relative motion of the follower satellite with respect to the leader satellite. But, the modified Hill's equations considering J2 perturbation were used for the design of sliding mode controller. Sliding mode control law causes the chattering phenomenon because it is a discontinuous control. Dead-zone was used to avoid the chattering. The Extended Kalman filter was applied to estimate the state vector based on the measurements of relative distance and velocity between two satellites.

  • PDF

Merging of Satellite Remote Sensing and Environmental Stress Model for Ensuring Marine Safety

  • Yang, Chan-Su;Park, Young-Soo
    • 한국항해항만학회지
    • /
    • 제27권6호
    • /
    • pp.645-652
    • /
    • 2003
  • A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. It lastly is shown that based on ship information extracted from JERS data, a qualitative evaluation method of environmental stress is introduced.

Development of the Pulsed Plasma Thruster (PPT) for Science and Technology Satellite-2 (STSAT-2)

  • Shin, G.H.;Nam, M.R.;Cha, W.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.352-355
    • /
    • 2005
  • This paper describes an engineering model development of a pulsed plasma thruster, which is capable of an impulse bit of 20uNs and a specific impulse of 800s. The solid fuel which is Teflon allows for a self-contained, inert and stable propellant system. And, the PPT technology makes it possible to consider a revolutionary attitude control system (ACS) concept providing stabilization and pointing accuracies previously obtainable only with reaction wheels, with reduced mass and power requirements.

  • PDF

COMS 특별세션 (THERMAL CONTROL DESIGN FOR COMS)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF

Model Identification and Attitude Control Methodology for the Flexible Body of a Satellite

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.240-245
    • /
    • 2010
  • The controller of a model reference adaptive control monitors the plant's inputs and outputs to acknowledge its characteristics. It then adapts itself to the characteristics it encounters instead of behaving in a fixed manner. An important part of every adaptive scheme is the adaptive law for estimating the unknown parameters on line. A more precise model is required to improve performance and to stabilize a given dynamic system, such as a satellite in which performance varies over time and the coefficients change due to disturbances, etc. After model identification, the robust controller ($H{\infty}$) is designed to stabilize the rigid body and flexible body of a satellite, which can be perturbed due to disturbance. The result obtained by the $H{\infty}$ controller is compared with that of the proportional and integration controller which is commonly used for stabilizing a satellite.

Star Visibility Analysis for a Low Earth Orbit Satellite

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Ki-Lyuk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.28.2-28.2
    • /
    • 2008
  • Recently, star sensors have been successfully used as main attitude sensors for attitude control in many satellites. This research presents the star visibility analysis for star trackers and the goal of this analysis is to make sure that the star tracker implementation is suitable to the mission profile and scenario and satisfies the requirement of attitude orbit control system. As a main optical attitude sensor imaging stars, accomodations of a star tracker should be optimized in order to improve the probability of the usage by avoiding the blinding (the unavailability) by the Sun and the Earth. For the analysis, a statistical approach and a time simulation approach are used. The statistical approach is based on the generation of numerous cases, to derive relevant statistics about Earth and Sun proximity probabilites for different lines of sight. The time simulation approach is performed for one orbit to check the statistical result and to refine the statistical result and accomodations of star trackers. In order to perform simulations first of all, an orbit and specific mission profiles of a satellite are set, next the earth proximity probability and the sun proximity probability are calculated by considering the attitude maneuvers and the geometry of the orbit, and then finally the unavailability positions are estimated. As a result, the optimized accomodations of two star trackers are suggested for the low earth orbit satellite.

  • PDF

Development of Integrated Orbit and Attitude Software-in-the-loop Simulator for Satellite Formation Flying

  • Park, Han-Earl;Park, Sang-Young;Park, Chandeok;Kim, Sung-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2013
  • An integrated orbit and attitude control algorithm for satellite formation flying was developed, and an integrated orbit and attitude software-in-the-loop (SIL) simulator was also developed to test and verify the integrated control algorithm. The integrated algorithm includes state-dependent Riccati equation (SDRE) control algorithm and PD feedback control algorithm as orbit and attitude controller respectively and configures the two algorithms with an integrating effect. The integrated SIL simulator largely comprises an orbit SIL simulator for orbit determination and control, and attitude SIL simulator for attitude determination and control. The two SIL simulators were designed considering the performance and characteristics of related hardware-in-the-loop (HIL) simulators and were combined into the integrated SIL simulator. To verify the developed integrated SIL simulator with the integrated control algorithm, an orbit simulation and integrated orbit and attitude simulation were performed for a formation reconfiguration scenario using the orbit SIL simulator and the integrated SIL simulator, respectively. Then, the two simulation results were compared and analyzed with each other. As a result, the user satellite in both simulations achieved successful formation reconfiguration, and the results of the integrated simulation were closer to those of actual satellite than the orbit simulation. The integrated orbit and attitude control algorithm verified in this study enables us to perform more realistic orbit control for satellite formation flying. In addition, the integrated orbit and attitude SIL simulator is able to provide the environment of easy test and verification not only for the existing diverse orbit or attitude control algorithms but also for integrated orbit and attitude control algorithms.