• Title/Summary/Keyword: Sappanchalcone

Search Result 2, Processing Time 0.019 seconds

Anticonvulsant Compounds from the Wood of Caesalpinia sappan L.

  • Baek, Nam-In;Jeon, Seong-Gyu;Ahn, Eun-Mi;Hahn, Jae-Taek;Bahn, Jae-Hoon;Jang, Joong-Sik;Cho, Sung-Woo;Park, Jin-Kyu;Choi, Soo-Young
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.344-348
    • /
    • 2000
  • 80% Aqueous MeOH extracts from the wood of Caesalpinia sappan, which showed remarkable anticonvulsant activity, were fractionated using EtOAc, n-BuOH, and $H_2$O. Among them, the EtOAc fraction significantly inhibited the activities of two GABA degradative enzymes, succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR). Repeated column chromatographies for the fraction guided by activity test led to the isolation of the two active principal components. Their chemical structures were determined to be sappanchalcone and brazilin based on spectral data. The pure compounds, sappanchalcone (1) and brazilin (2), inactivated the SSAR activities in a dose dependent manner, whereas SSADH was inhibited partially by sappanchalcone and not by brazilin.

  • PDF

α-Glucosidase Inhibitory Activity of Phenolic Compounds Isolated from the Stems of Caesalpinia decapetala var. japonica

  • Le, Thi Thanh;Ha, Manh Tuan;Hoang, Le Minh;Vu, Ngoc Khanh;Kim, Jeong Ah;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • In our study, sixteen known phenolic compounds, including quercetin (1), methyl gallate (2), caesalpiniaphenol C (3), 8S,8'S,7'R-(-)-lyoniresinol (4), 7,3',5'-trihydroxyflavanone (5), sappanchalcone (6), sappanone A (7), taxifolin (8), fisetin (9), fustin (10), (+)-catechin (11), brazilin (12), 3,4,5-trimethoxyphenyl β-ᴅ-glucopyranoside (13), 1-(2-methylbutyryl)phloroglucinol-glucopyranoside (14), (+)-epi-catechin (15), and astragalin (16) and one mixture of two conformers of protosappanin B (17/18) were isolated from the stems of Caesalpinia decapetala var. japonica. Their structures were elucidated based on a comparison of their physicochemical and spectral data with those of literature. To the best of our knowledge, this represents the first isolation of compounds 3, 4, 8, 9, and 10 from C. decapetala and compounds 13 and 14 from the Caesalpinia genus. All the isolated compounds were evaluated for their inhibitory effect against the α-glucosidase enzyme. Among them, two flavonols (1 and 9), one chalcone (6), and one homoisoflavanone (7) exhibited an inhibitory effect on α-glucosidase action with an IC50 range value of 5.08-15.01 μM, stronger than that of the positive control (acarbose, IC50 = 152.22 μM). Kinetic analysis revealed that compounds 1 and 9 showed non-competitive α-glucosidase inhibition, while the inhibition type was mixed for compounds 6 and 7.