• 제목/요약/키워드: Saponins

검색결과 717건 처리시간 0.027초

Chemopreventive Effect of Saponins Derived from Roots of Platycodon grandiflorum on 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone-Induced Lung Tumorigenesis in A/J Mice

  • Lee, Kyung-Jin;Shin, Dong-Weon;Chung, Young-Chul;Jeong, Hye-Gwang
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.651-656
    • /
    • 2006
  • This study examined the chemopreventive effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), against the tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), -on lung tumorigenesis in A/J mice. The mice were treated with a single NNK dose (100 mg/kg b.w., i.p.). CKS (0.5, 1, 4 mg/kg body wt.) was administered orally daily for 3 days/week beginning 1 day after the NNK treatment and was maintained throughout the experiment. The administration of CKS suppressed the NNK-induced increase in the level of proliferating cell nuclear antigen, which are a marker of cell proliferation, in the lungs of the mice 4 weeks after the NNK injection. Twenty-five weeks after the NNK treatment, the mice were sacrificed and the number of surface lung tumors was measured. CKS significantly reduced the number of lung tumors induced by NNK in a dose dependent manner. These results suggest that CKS suppresses the development of lung tumors and has a chemopreventive effect against NNK-induced mouse lung tumorigenesis.

In Vitro Anticomplementary Activity of Hederagenin Saponins Isolated from Roots of Dipsacus asper

  • Oh, Sei-Ryang;Jung, Keun-Young;Son, Kun-Ho;Park, Si-Hyung;Lee, Im-Seon;Ahn, Yung-Seop;Lee, Hyeong-Kyu
    • Archives of Pharmacal Research
    • /
    • 제22권3호
    • /
    • pp.317-319
    • /
    • 1999
  • Anticomplementary activity of hederagenin and related saponins isolated from Dipsacus asper was investigated in vitro. HN saponin F (3) was most potent with $IC_{50}$ value of$ 3.7{\times}10^{-5} M$ followed by 3-O-${\beta}-D-glucopyranosyl-(1{\rightarrow} 3)-{\alpha}-L-rhamnopyranosyl-(1{\rightarrow}2)-{\beta}-L-arabinopyranosyl$ hederagenin $28-O-{\beta}-D-glucopyranosyl-(1{\rightarrow}6)-beta$-D-glucopyrano side (8), $3-O-{\beta}-L-arabinopyranosyl$ hederagenin $28-O-{\beta}-D-glucopyranosyl-(1{\rightarrow}6)-{\beta}-D-glucopyranoside$ (5), dipsacus saponin A (4), and hederagenin (1) on the classical pathway (CP) of complement system, while the saponins 3-5 did not show the inhibition of hemolysis and rather increase the hemolysis on the alternative pathway (AP). However, all of C-3 monodesmosides [prosapogenin CP (2), dipsacus saponin B (6), and dipsacus saponin C (7)] evoked hemolysis directly on the erythrocytes.

  • PDF

Simultaneous Determination of Triterpenoid Saponins from Pulsatilla koreana using High Performance Liquid Chromatography Coupled with a Charged Aerosol Detector (HPLC-CAD)

  • Yeom, Hye-Sun;Suh, Joon-Hyuk;Youm, Jeong-Rok;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1159-1164
    • /
    • 2010
  • Several triterpenoid saponins from root of Pulsatilla koreana Nakai (Ranunculaceae) were studied and their biological activities were reported. It is difficult to analyze triterpenoid saponins using HPLC-UV due to the lack of chromophores. So, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we developed and validated a novel method of high performance liquid chromatography coupled with a charged aerosol detector for the simultaneous determination of four triterpenoid saponins: pulsatilloside E, pulsatilla saponin H, anemoside B4 and cussosaponin C. Analytes were separated by the Supelco Ascentis$^{(R)}$ Express C18 column (4.6 mm ${\times}$ 150 mm, 2.7 ${\mu}m$) with gradient elution of methanol and water at a flow rate of 0.8 mL/min at $30^{\circ}C$. We examined various factors that could affect the sensitivity of the detectors, including various concentrations of additives, the pH of the mobile phase, and the CAD range. Linear calibration curves were obtained within the concentration ranges of 2 - 200 ${\mu}g$/mL for pulsatilloside E, anemoside $B_4$ and cussosaponin C, and 5 - 500 ${\mu}g$/mL for pulsatilla saponin H with correlation coefficient ($R^2$) greater than 0.995. The limit of detection (LOD) and quantification (LOQ) were 0.04 - 0.2 and 2 - 5 ${\mu}g$/mL, respectively. The validity of the developed HPLC-CAD method was confirmed by satisfactory values of linearity, intra- and inter-day accuracy and precision. This method could be successfully applied to quality evaluation, quality control and monitoring of Pulsatilla koreana.

인삼의 항마약 효과 (Antinarcotic Effect of Panax ginseng)

  • Hack Seang Kim;Ki
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.178-186
    • /
    • 1990
  • The analgesic effect of morphine was antagonized and the development of tolerance was suppressed by the modification of the neurologic function in the animals treated with ginseng saponins The activation of the spinal descending inhibitory systems as well as the supraspinal structures by the administration of morphine was inhibited in the animals treated with ginseng saponine intracerebrally or intrathecally. The development of morphine tolerance and dependence, and the abrupt expression of naloxone inducted abstinence syndrom were also inhibited by ginsenoside Rb1, Rb2, Rg1 and Re. These results suggest that ginsenoside Rbl, Hbs, Rgl and Re are the bioactive components of panax ginseng on the inhibition of the development of morphine tolerance and dependence, and the inhibition of abrupt abstinence sindrome. In addition, further research on the minor components of Pnnnxkinsenl should be investigated. A single or daily treatment with ginseng saponins did not induce any appreciable changes in the brain in level of monoamines at the variolls time intervals and at the various day intervals, respectively. The inhibitory or facilitated effects of ginseng saponins on electrically evoked contractions in guinea pig ileum ($\mu$-receptor) and mouse vats deferens ($\delta$-receptor) were not mediated through opioid receptors. The antagonism of a $\chi$ receptor agonist, U-50, 488H was also not mediated through opioid receptors in the animals treated with ginseng saponins, but mediated through serotonergic mechanisms. Ginseng saponins inhibited morphine 6-dehydrogenase which catalyzed the production of morphinone from morphine, and increased hepatic glutathione contents for the detoxication of morphinone. This result suggests that the dual action of the above plays an important role in the inhibition of the development of morphine tolerance and dependence.

  • PDF

인삼 사포닌이 일산화탄소중독 및 노화과정에서 생쥐의 뇌신경세포 분포에 미치는 영향 (Effect of Ginseng Saponins on the Distribution of Brain Nerve Cells in Carbon Monoxide-intoxicated Mice and Aged Mice)

  • 신정희;이인란;조금희;윤재순
    • 약학회지
    • /
    • 제36권3호
    • /
    • pp.269-277
    • /
    • 1992
  • The effects of ginseng saponins on the distribution of nerve cells in cerebral cortex of carbon monoxide (CO)-intoxicated mice were studied in the young ($5{\sim}8$ weeks) and aged ($43{\sim}52$ weeks) mice. Mice were exposed to 5000 ppm of CO for 40 minutes (72% HbCO). After that, nerve cells in motor(area 4), somatosensory(area 3) and visual(area 17) area of cerebral cortex was observed. In young mice, the number of nerve cells in each area was significantly decreased on 1st, 7th and 14th day after CO intoxication. In aged mice, that was also decreased after CO intoxication. Especially the number of the nerve cells in motor and somatosensory area was significantly decreased on 1st and 7th day, while that in visual area was decreased only on 1st day. The number of nerve cells in young mice pretreated with ginseng saponins were significantly decreased less on 7th and 14th day than that of untreated mice. The number of nerve cells in each area of normal aged mice was larger than that of normal young mice. The results suggest that CO exposure causes local degeneration or disturbance of nerve cells and delayed neurologic sequelae, while ginseng saponins might play a role of protective action on the nerve cells which were damaged by CO.

  • PDF

Rapid separation and identification of 31 major saponins in Shizhu ginseng by ultra-high performance liquid chromatography-electron spray ionization-MS/MS

  • Sun, Ting-Ting;Liang, Xin-Lei;Zhu, He-Yun;Peng, Xu-Ling;Guo, Xing-Jie;Zhao, Long-Shan
    • Journal of Ginseng Research
    • /
    • 제40권3호
    • /
    • pp.220-228
    • /
    • 2016
  • Background: Among the various ginseng strains, Shizhu ginseng is endemic to China, mainly distributed in Kuandian Manchu Autonomous County (Liaoning Province, China); however, not much is known about the compounds (especially saponins) in Shizhu ginseng. Methods: A rapid, sensitive, and reliable ultra-high performance liquid chromatography coupled with MS/MS (UHPLC-MS/MS) method was developed to separate and identify saponins in Shizhu ginseng. Results: The separation was carried out on a Waters ACQUITY UPLC BEH $C_{18}$ column ($100mm{\times}2.1mm$, $1.7{\mu}m$) with acetonitrile and 0.1% formic acid aqueous solution as the mobile phase under a gradient elution at $40^{\circ}C$. The detection was performed on a Micromass Quattro Micro API mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 31 saponins were identified or tentatively characterized by comparing retention time and MS data with related literatures and reference substances. Conclusion: The developed UHPLC-MS/MS method was suitable for identifying and characterizing the chemical constituents in Shizhu ginseng, which provided a helpful chemical basis for further research on Shizhu ginseng.

Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment

  • Zhang, Fengxiang;Tang, Shaojian;Zhao, Lei;Yang, Xiushi;Yao, Yang;Hou, Zhaohua;Xue, Peng
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.163-175
    • /
    • 2021
  • Background: Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. Methods: This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. Results: The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Conclusion: Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.

Alpha-Glucosidase Inhibitory Activity of Saponins Isolated from Vernonia gratiosa Hance

  • Pham Van Cong;Hoang Le Tuan Anh;Le Ba Vinh;Yoo Kyong Han;Nguyen Quang Trung;Bui Quang Minh;Ngo Viet Duc;Tran Minh Ngoc;Nguyen Thi Thu Hien;Hoang Duc Manh;Le Thi Lien;Ki Yong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.797-805
    • /
    • 2023
  • Species belonging to the Vernonia (Asteraceae), the largest genus in the tribe Vernonieae (consisting of about 1,000 species), are widely used in food and medicine. These plants are rich sources of bioactive sesquiterpene lactones and steroid saponins, likely including many as yet undiscovered chemical components. A phytochemical investigation resulted in the separation of three new stigmastane-type steroidal saponins (1 - 3), designated as vernogratiosides A-C, from whole plants of V. gratiosa. Their structures were elucidated based on infrared spectroscopy (IR), one-dimensional (1D) and two-dimensional nuclear magnetic resonance (2D NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and electronic circular dichroism analyses (ECD), as well as chemical reactivity. Molecular docking analysis of representative saponins with α-glucosidase inhibitory activity was performed. Additionally, the intended substances were tested for their ability to inhibit α-glucosidase activity in a laboratory setting. The results suggested that stigmastane-type steroidal saponins from V. gratiosa are promising candidate antidiabetic agents.

한국인삼(韓國人蔘)의 Saponin에 관(關)한 연구(硏究)제3보(第三報) -산지별(産地別), 부위별(部位別), 재배기간별(栽培期間別) 인삼(人蔘) 및 가공중(加工中) Saponin함량(含量)에 관(關)하여- (Saponins of Korean Ginseng Panax ginseng C.A. Meyer (Part III) -Saponins of ginseng by the cultivating locations, sampling seasons, plant parts, growing stages and the processings-)

  • 조성환
    • Applied Biological Chemistry
    • /
    • 제20권2호
    • /
    • pp.188-204
    • /
    • 1977
  • 인삼(人蔘)의 유효성분(有效成分)으로 알려진 saponin을 Thin layer chromatography로 전개(展開)하여 Digital Densitometer를 사용(使用)하여 한국인삼(韓國人蔘)의 산지별(産地別), 부위별(部位別), 재배연도별(栽培年度別) saponin함량(含量) 및 그 saponin fraction의 조성비(組成比)를 정량(定量)하고, 홍삼(紅蔘) 및 인삼(人蔘)엑기스 제조중(製造中) 일어나는 saponin함량(含量)의 변화(變化)를 연구(硏究)하여 다음과 같은 결과(結果)를 얻었다. 1. 산지별(産地別) saponin 함량(含量)에는 별로 차이(差異)가 없었으며, panaxadiol을 aglycone으로 하는 saponin군(群)과 panaxatriol을 aglycone으로 하는 sapon군(群)의 조성비(組成比)는 ($1.7{\sim}2.6$) : 1정도였다. 2. 부위별(部位別)로 볼 때, saponin함량(含量)은 미삼(尾蔘)이 12.7%로서 3.3%인 백삼(白蔘)의 4배에 가까운 높은 값을보였다. 그리고 saponin fraction별(別)로 볼 때, panaxadiol을 aglycone으로 하는 saponin fraction도 미삼(尾蔘)이 백삼(白蔘)보다 많으나, panaxatriol을 aglycone으로 하는 saponin fraction은 반대(反對)로 미삼(尾蓼)이 백삼(白蔘)보다 적었다. TLC의 2차원전개결과(次元展開結果), ginsenoside-Rd는 백삼(白蔘)에만 나타나고, 미삼(尾蔘)에서는 나타나지 않는 반면(反面), Rf와 $Rg_1$은 미삼(尾蔘)에서는 분리(分離)되었으나, 백삼(白蔘)에서는 $Rg_1$만이 존재하고, Rf는 분리(分離)되지 않았다 3. 재배연도별(栽培年度別) 근부(根部)의 saponin함량(含量)은 재배기간(栽培其間)에 따라 일정(一定)한 경향(傾向)을 찾아볼 수 없으나, 인삼근당평균(人蔘根當平均) saponin함량(含量)은 2년근(年根)이 90.3mg, 3년근(年根)이 254.2mg. 4년근(年根)이 404.2mg, 5년근(年根)이 996.9mg, 6년근(年根)이 1377.1mg으로 재배기간(栽培其間)이 길어질수록 현저(顯著)하게 높았다. 그리고 인삼지상부(人蔘地上部)의 saponin함량(含量)도 재배기간(栽培其間)에 길어질수록 높아지는 경향(傾向)을 볼 수 있었다. 그러나, saponin fraction별(別)볼 때는 $5{\sim}6$년(年)의 수확기(收穫期)에 가까워질수록 panaxatriol을 aglycone으로 하는 saponin fraction의 함량(含量)이 높았다. 4. 홍삼제조중(紅蔘製造中)의 saponin fraction별(別) panaxadiol을 aglycone으로 하는 saponin fraction의 조성비(組成比)도 건삼(乾蔘)에 비(比)하여 홍삼(紅蔘)이 낮아졌으나, panaxatriol을 aglycone으로 하는 saponin fraction의 조성비(組成比)는 건삼(乾蔘)에 비(比)하여 홍삼(紅蔘)이 오히려 높았다. 홍삼(紅蔘)의 Thin layer chromatogram에는 건삼(乾蔘)의 그것에 나타나지 않았던 수개(數個)의 미확인(未確認) spot를 더 볼 수 있었다. 5. Ethanol과 물로 미삼(尾蔘)을 추출(抽出)하여, 29.9%의 인삼(人蔘)엑기스를 얻었는데, 이 엑기스에는 미삼(尾蔘)으로부터 추출수율(抽出收率)이 94.2%에 상당(相當)하는 saponin이 이행(移行) 함유(含有)되어 있었다.

  • PDF

인삼성분이 초산발효에 미치는 영향에 관한 연구(제2보) (Studies on the Effect of Korean Ginseng Components on Acetic acid Fermentation. [II])

  • 남성희;유태종
    • Journal of Ginseng Research
    • /
    • 제4권2호
    • /
    • pp.133-145
    • /
    • 1980
  • In order to find out the inhibitors of acetic acid fermentation in Korean ginseng (Panax Sin son C. A. Meyer), total aglycone, panaxadiol, panaxadiol, oleanolic acid and ${\beta}$ -sitosterol were added to the basal medium, respectively, and a surface culture was carried out at 30$^{\circ}C$. The results were as follows: 1 . Saponins lost their activity to inhibit the acetic acid fermentation by hydrolysis. 2 Panaxadiol inhibited slightly, and the degree of inhibition was about 1/300 of that of free saponins. 3. Panaxadiol and oleanolic acid inhibited silighly similar to total aglycone. 4. Acetic acid fermentation was stimulated at the early stage when ${\beta}$-sitosterol was added to the media below the level of 0.000815%. But the fermentation was inhibited when media contained it more than that media 5. An over-oxidation of acetic acid was observed when the media contained total aglycone. panaxadiol, panaxatriol, oleanolic acid and ${\beta}$-sitosterol, respectively, while the media which contained sucrose, ginseng extracts ginseng saponins was shown not to be over-oxidized.

  • PDF