• Title/Summary/Keyword: Saponins

Search Result 714, Processing Time 0.02 seconds

The Effect of Korean Red Ginseng Saponins on the Recombinant Serotonin Type 3 Receptor Expressed in Xenopus Oocytes (Xenopus oocytes에서 발현된 유전자재조합 세로토닌 제3형 수용체에 대한 한국산 홍삼 사포닌의 효과)

  • 구본녀;강정완;배선준;김미경;고성룡;민경태
    • Journal of Ginseng Research
    • /
    • v.25 no.2
    • /
    • pp.74-81
    • /
    • 2001
  • The effect of Korean Ginseng saponins (total saponin, PD saponin and PT saponin) on the serotonin type 3 receptor, which is known to be involved in nausea and vomiting following anticancer chemotherapy or the general anesthesia, was investigated. after in vitro transcribed recombinant serotonin type 3 receptor in the Xenopus laevis oocyte, classic two electrodes voltage clamp technique was used. All of ginseng saponins inhibited the response of the agonist, serotonin, on the serotonin type 3 receptor in a dose-dependent manner. PT saponin showed to have the inhibitory effect more than 2 times as potent as PD saponin. Total saponin shifted the serotonin dose response plot to the right (EC$\_$50/, 0.70$\pm$0.17 $\mu$M into 3.57$\pm$1.42 $\mu$M, and Hill coefficient, 2.14$\pm$0.60 into 1.52$\pm$1.00). Ginseng saponin did not change the reversal potential (∼0 mV) of serotonin type 3 receptor. These results suggest that Korean ginseng saponin may have the inhibitory effect on serotonin type 3 receptor.

  • PDF

Modulation of LPS-Stimulated Astroglial Activation by Ginseng Total Saponins

  • Kim, Sok-Ho;Shim, Se-Hwan;Choi, Dea-Seung;Kim, Jong-Hoon;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • Ginseng, a traditional medicine in Asian countries, is known to prevent various neuropathologic diseases such as Alzheimer's. Ginseng total saponins (GTS) in particular are one of the most effective ginseng extract compounds for neuroprotection. However, their protective effects on astrocytes are rarely reported. In pathological circumstances, astroglial activation plays a pivotal role in neuroinflammation. Subsequently, neuroinflammation induced by activated astrocytes causes brain damage. The purpose of the present study was to determine the suppressive effects of GTS on astroglial activation in lipopolysaccharide (LPS)-stimulated rat primary astrocytes. Astrocytes treated for 24 h with LPS demonstrated suppressed glialfibrillary acidic protein expression in a dose-dependent manner in the presence of GTS. GTS reduced production of proinflammatory cytokines such as tumor necrosis factor-${\alpha}$ and interleukin-1${\beta}$ and inhibited the level of inducible nitric oxide synthase, and cyclooxygenase-2 in LPS-stimulated astrocytes. Furthermore, GTS suppressed intracellular reactive oxygen species production. These modulations due to GTS may indicate neuroprotective antiinfl ammatory properties which may in turn be related to improvements in neurological performance.

In Vitro Inhibitory Effect of Triterpenoidal Saponins from Platycodi Radix on Pancreatic Lipase

  • Xu Bao Jun;Han Li Kun;Zheng Yi Nan;Lee Jeong Hyun;Sung Chang Keun
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.180-185
    • /
    • 2005
  • In the process of investigating anti-obesity effect of Platycodi Radix, we found that aqueous extract of Platycodi Radix might inhibit intestinal absorption of dietary fat by inhibiting pancreatic lipase (PL) activity. In order to clarify the anti-obesity mechanism of Platycodi Radix, activity-guided isolation was performed to find active components. The total saponin fraction of Platycodi Radix appeared to have a potent inhibitory activity against the hydrolysis of triolein emulsified with phosphatidycholine by pancreatic lipase in vitro. Based on these results, further purification of active components yielded 10 known triterpenoidal saponins, among these compounds, platycodin A, C, D, and deapioplatycodin D exhibited significant inhibitory effects on PL at the concentration of $500\;{\mu}g/mL$ with 3.3, 5.2, 34.8, and $11.67\%$ pancreatic lipase activity vs control, respectively. Platycodin D was found to inhibit the PL activity in a dose-dependent manner. Therefore, the anti-obesity effect of Platycodi Radix might be due to the inhibition of pancreatic lipase by its saponins.

Effects of Ginseng Total Saponins on the Antinociception and the Tolerance Development of U-50,488H

  • Kim, Hack-Seang;Kim, Sun-Hye;Seong, Teon-Hee;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.16 no.3
    • /
    • pp.237-243
    • /
    • 1993
  • These studies were performed to investigate the acting sites of ginseng total saponins (GTS) on the U-50, 488H-induced antinociception and the inhibitory effect of the development of tolerance to U-50, 488H-induced antinociception by GTS were studied. The U-50, 488H-induced antinociception was ntagonized in mice pretreated with GTS intraperitoneally, intracerebrally. These antagonisms were reversed by the pretratment iwth a serotonin precursor, 5-hydroxytrypophan (5-HTP), but not with a noradrenaline precursor, L-dihydroxyphenylalanine (L-DOPA). However, the intraplantar sites. On the other hand, GTS inhibited the development of tolerance to U-50, 488H-induced antinociception was reversed by pretreatment with 5-HTP, but not with L-DOPA. Therefore, the antagonism of U-50, 488H-induced antinociception and the inhibition of the development of tolerance to U-50, 488H-induced antinociception and the inhibition of the development of tolerance to U-50, 488H-induced antinociception by GTS are dependent on serotonegic mechanisms.

  • PDF

Improved Bioactivity of 3-O-β-ᴅ-Glucopyranosyl Platycosides in Biotransformed Platycodon grandiflorum Root Extract by Pectinase from Aspergillus aculeatus

  • Ju, Jung-Hun;Lee, Tae-Eui;Lee, Jin;Kim, Tae-Hun;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.847-854
    • /
    • 2021
  • Platycodon grandiflorum (balloon flower) root (Platycodi radix, PR) is used as a health supplement owing to its beneficial bioactive properties. In the present study, the anti-inflammatory, antioxidant, and whitening effects of deglycosylated platycosides (saponins) from PR biotransformed by pectinase from Aspergillus aculeatus were investigated. The bioactivities of the platycosides improved when the number of sugar moieties attached to the aglycone platycosides was decreased. The deglycosylated saponins exhibited higher lipoxygenase inhibitory activities (anti-inflammatory activities) than the precursor platycosides and the anti-inflammatory compound baicalein. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the pectinasetreated PR extract was higher than that of the non-treated PR extract. The trolox-equivalent antioxidant capacity (TEAC) assay showed improved values as the saponins were hydrolyzed. The tyrosinase inhibitory activities (whitening effects) of deglycosylated platycosides were higher than those of the precursor platycosides. Furthermore, 3-O-β-ᴅ-glucopyranosyl platycosides showed higher anti-inflammatory, antioxidant, and whitening activities than their precursor glycosylated platycosides. Therefore, 3-O-β-ᴅ-glucopyranosyl platycosides may improve the beneficial effects of nutritional supplements and cosmetic products.

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector

  • Liu, Fang;Ma, Ni;He, Chengwei;Hu, Yuanjia;Li, Peng;Chen, Meiwan;Su, Huanxing;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • Background: Panax notoginseng leaves (PNL) exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Methods: Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS) and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Results: Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL-ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd-were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of $35^{\circ}C$. This developed HPLC-UV method provides an adequate linearity ($r^2$ > 0.999), repeatability (relative standard deviation, RSD < 2.98%), and inter- and intraday variations (RSD < 4.40%) with recovery (98.7-106.1%) of seven saponins concerned. This validated method was also conducted to determine seven components in 10 batches of PNL. Conclusion: These findings are beneficial to the quality control of PNL and its relevant products.

Beneficial Role of Ginseng Saponin on Hemodynamic Functions of Porcine Blood Vessel

  • Kim, Hyoung-Bae;Kang, Chang-Won;Kim, Bum-Seok;Kwon, Jung-Kee;Yu, Il-Jeoung;Roh, Yoon-Seok;Nah, Seung-Yeol;Ejaz, Sohail;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.314-320
    • /
    • 2010
  • The previous reports have showed that ginseng saponins, which are the active ingredients of Panax ginseng, cause the relaxation of artery that are contracted due to a various of hormones or potassium ($K^+$). Recently, we also showed that ginsenosides differentially regulate channel activity. The purpose of this study was to examine whether ginseng saponins affect contraction induced by $K^+$, serotonin (5-HT), or acetylcholine (Ach) in porcine coronary vessel. Treatment with concentrations of ginseng saponins caused a relaxation of 25 mM KCl-induced porcine coronary artery contraction. Also, ginseng saponin induced a significant dose-dependent relaxation of $3\;{\mu}M$ 5-HT-induced porcine coronary artery with the endothelium. In the porcine artery with the endothelium, ginseng saponins induced a relaxation by $3\;{\mu}M$ 5-HT in a concentration-dependent pattern. Ginseng saponins induced relaxation of both 25 mM KCl- and $3\;{\mu}M$ 5-HT-induced coronary artery contraction in the absence and presence of the endothelium. In contrast, treatment with $100\;{\mu}g/mL$ ginseng saponin did not induce relaxation in coronary artery contraction induced by Ach ($0.01\;{\mu}M$ to $30\;{\mu}M$) in the presence of the endothelium, but did cause significant relaxation of coronary artery contractions by Ach ($0.01\;{\mu}M$ to $30\;{\mu}M$) in the absence of the endothelium. These findings indicate that ginseng saponin (> $100\;{\mu}g/mL$) significantly inhibits porcine coronary artery contractions caused by $K^+$, 5-HT, and Ach. Therefore, in this study, we demonstrated that ginseng saponin may show beneficial roles on abnormal coronary contraction.

Ginseng Saponins Enhance Maxi $Ca^{2+}-activated\;K^+$ Currents of the Rabbit Coronary Artery Smooth Muscle Cells

  • Chunl Induk;Kim Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.230-234
    • /
    • 1999
  • Potassium channels play an important role in regulating vascular smooth muscle tone. Four types of $K^+$ channels areknown to be expressed in vascular smooth muscle cells, and maxi $Ca^{2+}-activated\;K^+$ channel $(BK_{Ca})$ is a dominant type of $K^+$ channels in these cells. Because total ginseng saponins and ginsenoside $Rg_3$ cause vasodilation with unclear mechanisms, we hypothesized that total ginseng saponins and ginsenoside $Rg_3$ induce vasodilation via activation of maxi $Ca^{2+}-activated\;K+$ channels. Whole-cell BKe. currents were voltage-dependent with half maximum activation at -14 mV, and the currents were sensitive to nanomolar ChTX and millimolar TEA. External application of total ginseng saponins increased the anlplitude of the whole-cell BKe. current in a concentration-dependent manner. Single-channel analysis indicates that total ginseng saponins caused the channel opening for a longer period of time. Ginsenoside $Rg_3$ increased the amplitude of whole-cell $K_{Ca}$ currents without affecting voltage dependence of the currents and increased single-channel open time. Hence, the results suggest that ginseng saponin-induced vasodilation may be due to activation of $K_{Ca}$.

  • PDF