• 제목/요약/키워드: Sandwich panel

검색결과 300건 처리시간 0.024초

EPS 샌드위치 패널 심재의 열방출율에 관한 연구 (A Study on the Heat Release Rate of EPS Sandwich Panel Core)

  • 박형주;조명호
    • 한국화재소방학회논문지
    • /
    • 제22권5호
    • /
    • pp.72-78
    • /
    • 2008
  • 본 연구에서는 EPS 샌드위치 패널 심재에 대한 일정한 외부 복사열에 의한 질량감소속도와 열방출특성을 분석하였다. 일정한 외부 복사열원에 노출된 EPS 샌드위치 패널 심재의 질량감소속도와 열방출특성을 분석하기 위해 3가지 Type의 시료를 사용하였으며, 연소열을 측정하기 위해 Oxygen bomb calorimeter를 질량감소속도와 열방출특성을 분석하기 위해 Mass loss calorimeter를 사용하였다. 질량감소속도와 열방출 특성을 분석하기 위해 $100mm{\times}100mm{\times}50mm$ 크기의 시료를 사용하였다. 연구결과 50 kW/$m^2$의 외부복사열원에서 평균질량감소속도는 Type A와 B의 경우 각각 2.7 g/$m^2s$, 2.8 g/$m^2s$로 비슷한 경향을 나타낸 반면, Type C는 2.3 g/$m^2s$로 상대적으로 낮게 나타났으며, 평균열방출속도는 Type B와 C의 경우 각각 47.19 kW/$m^2$, 50.06 kW/$m^2$으로 큰 차이가 없었으나, Type A는 58.23 kW/$m^2$으로 상대적으로 높게 나타났다. 열방출특성의 결과를 캐나다 분류체계에 적용할 경우 Type A와 C의 경우 C-3등급, Type B의 경우 C-2등급으로 분류되었다. 향후 콘칼로리미터법을 이용한 샌드위치 패널 심재에 대한 열방출율 특성과의 비교연구가 필요할 것으로 판단된다.

유리섬유복합체를 사용한 전단연결재 형상에 따른 중단열 벽체의 면내전단내력 (Effect of Glass Fiber-Reinforced Polymer (GFRP) Shear Connector's Shape on Inplane Shear Strength of Insulated Concrete Sandwich Panels)

  • 장석준;유영찬;김호룡;윤현도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.9-17
    • /
    • 2013
  • 최근, 중단열 벽체의 단열성능 향상을 위해 철과 콘크리트 코어 전단연결재를 열전도율이 낮은 유리섬유복합체 (GFRP)로 전단연결재를 대체하는 연구가 활발히 진행되고 있다. 본 연구는 단열재의 표면처리에 따른 부착력과, GFRP 전단연결재로 보강된 중단열 벽체의 전단내력을 알아보기 위하여 실시되었으며, 각 변수에 따른 영향을 분석함으로써 구조성능에 대한 검증을 실시하였다. 총 13개의 실험체에 대해 직접전단실험을 실시하였으며, 파괴양상 및 하중-상대슬립 관계에 대한 분석을 실시하였다. 실험결과, 기존의 압출법 보온판 (XPS) 단열재에 거친표면처리와 10 mm의 홈을 낸 경우 단열재와 콘크리트사이에 부착력을 향상시킬 수 있으며, 부착력의 기여는 전단연결재의 파단 상대슬립의 영향을 받는 것으로 나타났다. 파형 전단연결재의 폭이 커짐에 따라 강성이 증가하였으며, 보강단면적이 증가함에 따라 최대내력이 증가하였다. 효과적인 보강을 위해서는 파형 전단연결재의 높이와 피치의 비율을 1:2로 산정해야 할 것으로 판단되며, 안정적인 파괴를 위해서는 매립깊이에 대한 검증이 필요할 것으로 사료된다.

지붕하중 증가에 따른 공장건물 안정성확보를 위한 지붕외장재의 구조성능정보의 필요성 (The Necessity of Structural Performance Informations of Sandwich Panels for The Stability of Industry Building using Sandwich Panel as Roof Assemblies.)

  • 강경수
    • 한국산학기술학회논문지
    • /
    • 제18권11호
    • /
    • pp.725-730
    • /
    • 2017
  • 구조해석기법의 발전과 경제성을 중시하는 현실에 의해 건축물 주골조의 모멘트 강도비($M_u/{\Phi}M_n$)는 점차 증가하고 있다. 따라서 본 연구에서는 지붕재로 샌드위치패널을 사용하는 건축물의 안전성검토를 위하여, 지붕하중의 증가에 따른 구조해석을 실시하여 주구조부재의 $M_u/M_y$$M_u/M_p$의 변화를 검토하였다. 해석모델은 PEB구조 건물과 일반 H형강구조 건물을 대상으로 지붕하중을 증가시켜 구조해석을 실시하였다. 해석결과 해석모델의 지붕 설계하중의 약11% 증가할 경우, 주구조부재의 $M_u/M_y$가 1을 초과하였고, 약 36% 증가할 경우 작용모멘트가 소성모멘트보다 커져 부재의 파괴가 예상되었다. 중도리간격에 따른 지붕외장재가 지지할 수 있는 최대하중, KS기준에서 제시한 최대하중, 외장재생산업체의 시험값으로 산정한 최대하중을 비교하였다. 3가지 방법으로구한 패널이 지지할 수 있는 최대하중값은 주구조부재의 파괴가 예측되는 하중보다 큰 값을 나타내었다. 따라서 예상치 못한 지붕하중 증가로 인해 외장재의 파괴이전에 주구조부재의 파괴로 인한 구조물 전체 붕괴가 발생할 수 있으므로 안전성 확보를 위해서는 지붕외장재의 구조성능에 대한 정확한 정보의 필요성과 외장재 역시 구조설계대상임을 알 수 있었다.

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.

가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석 (Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element)

  • 박정;박훈철;윤광준;구남서;이재화
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.44-50
    • /
    • 2002
  • 본 논문에서는 저속충격을 받는 복합재 샌드위치 평판의 동적 거동에 관한 연구를 수행하였다. 접촉 하중의 산출을 위해서 Hertz의 접촉법칙을 새로이 수정하는 방법을 제시했는데, 지수를 줄이는 방법과 심재의 두께방향의 탄성계수의 값을 줄여 등가 탄성계수를 계산하는 방법을 사용했다. 접촉하중을 산출하는 비선형 방정식은 Newton-Raphson 방법을 사용하여 계산하였고, 시간적분에는 Newmark-beta 방법을 사용하였다. 이러한 기법과 18절점 가정변형률 솔리드 요소를 적용하여 저속충격 해석용 유한요소 프로그램을 개발했다. 이 프로그램을 이용하여 다양한 복합재 샌드위치 평판의 저속충격에 대한 동적 거동을 해석하였다. 제안된 접촉법칙을 적용한 해석결과를 분석하여 볼 때, 대부분의 경우에서 접촉하중과 접촉시간이 실험결과와 대체로 일치함을 확인하였다.

An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam with steel skins for two types of soft and stiff cores

  • Marandi, S. Masoud;Dehkordi, Mohsen Botshekanan;Nourbakhsh, S. Hassan
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.261-276
    • /
    • 2019
  • The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated for the stiff one.

그라스울 샌드위치패널의 화재 안전 성능에 대한 실험적 연구 (An Experimental Study on Fire Safety Performance of Glass Wool Sandwich Panel)

  • 권오상;유용호;김흥열;민세홍
    • 한국화재소방학회논문지
    • /
    • 제26권5호
    • /
    • pp.21-27
    • /
    • 2012
  • 본 연구에서는 그라스울 샌드위치패널의 연소특성을 판단하기 위하여 밀도와 두께가 다른 총 6종류(밀도: 48/64 K, 두께: 50/75/100 T)의 시편을 선정하여, KS F ISO 9705 시험법을 준용하여 실물화재 시험을 실시하였다. 실물화재 시험은 $2.4(L){\times}3.6(W){\times}2.4(H)m$ 크기의 화재실 내부에 시험체를 설치하여 프로판 버너에 의해 시편을 화염에 노출시켜 연소특성을 판단하게 된다. 총 25분에 시험 시간 동안 프로판 버너는 100 kW(10분), 300 kW(10분)로 출력되며, 시험을 통해 열방출률, 열류량, 내부 온도가 측정된다. 실물화재 시험을 실시한 결과, 버너 열량을 포함하여 각 시편의 최대 열방출률은 333.2~365.5 kW, 최대 열류량은 12.4~12.9 kW/$m^2$로 나타났으며, 최대 내부온도는 모든 시편에서 $500^{\circ}C$를 초과하지 않았다. 실물화재 시험 중에 플래시오버 현상은 발생하지 않았으며, 각 시편의 열방출률, 열류량, 내부 온도 측정결과 시편의 밀도 및 두께에 따른 차이점은 나타나지 않았다.

TRIZ기법에 의한 물류창고의 화재원인 및 4M에 따른 예방대책 분석 (Classification of Fire Causes in Warehouses Using the TRIZ Technique and Analysis of Preventive Measures Accordingto 4M)

  • 한상훈;공하성
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.401-412
    • /
    • 2020
  • 이 연구는 TRIZ기법에 의한 물류창고 화재의 원인분석과 4M을 적용하여 화재예방대책을 제시하였다. 연구결과는 다음과 같다. 첫째, 창의적 문제해결기법인 TRIZ기법을 적용하여 물류창고 화재원인의 모순을 제시하였다. 둘째, 인적 요인, 물류창고의 화재대책으로 관리자의 안전 기준, 근로자 안전의식 강화, 샌드위치 패널의 작업자 시공기술 강화 등을 방안을 분석하였다. 셋째, 기계, 설비적 요인, 물류창고의 화재대책으로 안전시설, 안전장치 확대 설치, 화재 진압장비 도입 및 개발, 샌드위치 패널의 내화성능 향상방안을 제시하였다. 넷째, 작업, 환경적 요인, 물류창고의 화재대책으로 작업공법에 대한 안전수칙 및 관리감독 강화, 물건 적재 장소에 대한 방화구획설정, 성능위주설계 기반으로 한 방화구획의 설정방안을 제시하였다. 마지막으로, 관리적 요인, 물류창고의 화재예방대책으로 화재 위험도가 낮은 특정소방대상물, 화재안전기준을 적용하기 어려운 특정소방대상물에 샌드위치 패널이 불연재료 이상 재질 규정을 검토, 물류냉동 창고에 스프링클러설비를 설치, 샌드위치 패널 구조인 물류창고에는 바닥면적의 크기와 관계없이 자동설비의 설치를 의무화하되 소급적용하는 방안을 제안한다.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.