• 제목/요약/키워드: Sandwich core

검색결과 511건 처리시간 0.022초

등방성 샌드위치 빔의 평면 변형을 위한 통합 이론 (Universal Theory for Planar Deformations of an Isotropic Sandwich Beam)

  • 이창용
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.35-40
    • /
    • 2020
  • This work is concerned with various planar deformations of an isotropic sandwich beam, which generally consists of three layers: two stiff skin layers and one soft core layer. When one layer of the sandwich beam is modeled as a beam, the variational-asymptotic method is rigorously used to construct a zeroth-order beam model, which is similar to a generalized Timoshenko beam model capable of capturing the transverse shear deformations but still carries out the zeroth-order approximation. To analyze the planar sandwich beam, the sum of the energies of the two skin layers and one core layer is then formulated with different material and geometric properties and represented by a universal beam model in terms of the core-layer kinematics through interface displacement and stress continuity conditions. As a preliminary validation, two extreme examples are presented to demonstrate the capability and accuracy of this present approach.

On dynamic deflection analysis of sandwich beams under thermal and pulse loads

  • Mamoon A.A. Al-Jaafari;Haider Ali Hussein;Abdulaziz Saud Khider;Raad M. Fenjan;Nadhim M. Faleh
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.195-202
    • /
    • 2023
  • Dynamic deflection analysis of sandwich beams with cellular core under thermal and pulse loads has been performed in the present article. The cellular core sandwich beam has two layers fortified by graphene oxide powder (GOP) which are micromechanically modeled by Halpin-Tsai formulation. The pulse load has blast type and is applied on the top side of sandwich beam. The system of equations has been developed based on higher-order beam theory and Ritz method. Then, they are solved in Laplace domain to derive the dynamic deflections. The dependency of beam deflection on temperature variation, GOP content, pulse load duration/location and core relative density has been studied in detail.

Stochastic micro-vibration response characteristics of a sandwich plate with MR visco-elastomer core and mass

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.141-162
    • /
    • 2015
  • The magneto-rheological visco-elastomer (MRVE) is used as a smart core to control the stochastic micro-vibration of a sandwich plate with supported mass. The micro-vibration response of the sandwich plate with MRVE core and supported mass under stochastic support motion excitations is studied and compared to evaluate the vibration suppression capability. The effects of the supported mass and localized magnetic field on the stochastic micro-vibration response of the MRVE sandwich plate are taken into account. The dynamic characteristics of the MRVE core in micro-vibration are described by a non-homogeneous complex modulus dependent on vibration frequency and controllable by applied magnetic fields. The partial differential equations for the coupled transverse and longitudinal motions of the MRVE sandwich plate with supported mass are derived from the dynamic equilibrium, constitutive and geometric relations. The simplified ordinary differential equations are obtained for the transverse vibration of the MRVE sandwich plate under localized magnetic fields. A frequency-domain solution method for the stochastic micro-vibration response of sandwich plates with supported mass is developed based on the Galerkin method and random vibration theory. The expressions of frequency-response functions, response power spectral densities and root-mean-square velocity responses of the plate in terms of the one-third octave frequency band are obtained for micro-vibration evaluation. Finally, numerical results are given to illustrate the large response reduction capacity of the MRVE sandwich plate with supported mass under stochastic support motion excitations, and the influences of MRVE parameters, supported mass and localized magnetic field placement on the micro-vibration response.

Damping strategies for steel lattice sandwich constructions

  • Mai, Son P.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1321-1331
    • /
    • 2015
  • A square steel sandwich plate with lattice corrugated core is explored for damping improvement. A range of damping materials are filled inside the openings provided by the corrugated core, or are applied on the surfaces of the facesheets. The dynamic properties such as natural frequency and damping factor are experimentally measured for the sandwich plate with each filling solution. The relative performance of each insertion is compared in terms of damping capacity and added mass.

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

트러스코어형 샌드위치 판구조물의 진동파워흐름에 관한 연구 (A Study on Vibration Power Flow of Truss Core Type Sandwich Plate Structure)

  • 구경민;김동영;홍도관;박일수;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.863-866
    • /
    • 2002
  • In this study, we tried to grasp the characteristic of vibration power flow for the truss core type sandwich plate structure. As the result of the finite element analysis, this paper shows that the vibration power flow characteristic of truss core type sandwich plate structure is understood and the vibration power flow of upper plate according to the mode shape of structure is various. Also it presents the vibration power flow is affected by reinforced structure.

  • PDF

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

이방성 복합재료의 전자기파 투과특성 (Electromagnetic Wave Propagation in Anisotropic Composite Structures)

  • 전흥재;신현수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.407-414
    • /
    • 2002
  • The knowledge of interaction of electromagnetic waves in composite structures is important for designing the shielding structure for antenna such as radome. Recently, radomes are constructed in the form of foam core sandwich structures that have many mechanical advantages such as high strength, long fatigue life, low density and adaptability to the intended function of structure. However, the propagation of electromagnetic waves is affected by high anisotropic permeability and loss tangent of the composite skin. In this study, the analytical model to understand the propagation of electromagnetic waves in the anisotropic composites and foam core sandwich structures with composite skins was proposed. Numerical analyses of unidirectional composites and foam core sandwich structure as a function of incident angle were performed. From the results of analysis, the general tendencies of transmittance of electromagnetic wave through composites and foam core sandwich structure were obtained.

  • PDF

Dynamic results of GNPRC sandwich shells

  • E. Mohammad-Rezaei Bidgoli;M. Arefi
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.263-273
    • /
    • 2023
  • This paper investigates dynamic characteristics of a graphene nanoplatelets reinforced composite (GNPRC) sandwich doubly curved shell based on the first-order shear deformation theory (FSDT) and Hamilton's principle. The sandwich doubly curved shell is fabricated from a core made of honeycomb materials sandwiched by composite GNPs reinforced face-sheets. Effective materials properties of composite face-sheets are assumed to vary based on Halpin-Tsai micromechanical models and rule of mixture. Furthermore, the material properties of honeycomb core are estimated using Gibson's formula. The fundamental frequencies of the shell are computed with changes of main geometrical and material properties such as amount and distribution type of graphene nanoplatelets, side length ratio, thickness to length ratio of and side length ratio of honeycomb. The Navier's technique is presented to obtain responses. Accuracy and trueness of the present model and analytical solution is confirmed through comparison of the results with available results in literature. It is concluded that an increase in thickness to length ratio yields a softer core with lower natural frequencies. Furthermore, increase in height to length ratio leads to significant decrease in natural frequencies.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.