• 제목/요약/키워드: Sandwich Structure

검색결과 499건 처리시간 0.023초

Impact of a shock wave on a structure strengthened by rigid polyurethane foam

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.569-585
    • /
    • 2013
  • The use of the rigid polyurethane foam (RPF) to strengthen sandwich structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen sandwich steel structure under blast load. The sandwich steel structure is assembled to study the RPF as structural retrofitting. The filed blast test is conducted. The finite element analysis (FEA) is also used to model the sandwich steel structure under shock wave. The sandwich steel structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the numerical model. The RPF improves the sandwich steel structure performance under the blast wave propagation.

항공기 기체에 적용된 샌드위치 복합재 구조의 손상 후 수리 방안 연구 (A Study on Repair Technique after Damage of Aircraft Sandwich Composite Structure)

  • 박현범;공창덕
    • 항공우주시스템공학회지
    • /
    • 제7권1호
    • /
    • pp.39-43
    • /
    • 2013
  • In this study, damage assesment and repair technique of aircraft adopted on Sandwich composite structure were performed. The sandwich composite structure were damaged by drop weight type impact test machine. The damaged sandwich composite structure was repaired using external patch repair method after removing damaged area. This study presents comparison results of the experimental investigation between the impact damaged and the repaired specimen.

하니컴 샌드위치 Panel을 이용한 LCD/PDP생산공정용 고기능성 복합 신소재 파렛트의 최적설계 (The Optimum Design of the Light-weight Composite Pallet Plank for Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel)

  • 김윤해;최병근;손진호;조영대;엄수현;우병훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.388-394
    • /
    • 2005
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combind in a sandwich panel they produce a structure that is stiff, strong, and lightweight. In addition to use in honeycomb sandwich panels, honeycomb is used for energy absorption, radio frequency shielding, light diffusion, and to direct air flow.Accordingly, the usage of honeycomb sandwich structure is very widely applied to the aircraft, the automobile, and marine industry, etc., because of these advantages. Generally, this honeycomb sandwich structure is manufactured by autoclave process.In this study, the honeycomb sandwich structure was produced by prepreg. To prove the suitability the honeycomb sandwich structure with prepreg, The optimum design of the skin materials and honeycomb sandwich structure were evaluated with the theory of stress analysis.

  • PDF

가변 샌드위치 구조물의 형상최적설계 (Shape Optimal Design of Variable Sandwich Structure)

  • 박철민;박경진;이완익
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2162-2171
    • /
    • 1993
  • Geneal Structure optimization is utilized to minimize the weight of structures while satisfying constraints imposed on stress, displacements and natural frequencies, etc. Sandwich structures consist of inside core and outside face sheets. The selected sandwich structures are isotropic sandwich beams and isotropic sandwich plate. The face sheets are treated as membrane and assumed to carry only tensions, while the core is assumed to carry only transverse shear. The characteristic of the varying area are considered by adding the projected component of the tension to the transverse shear. The bending theory and energy method are adopted for analyzing sandwich beams and plates, respectively. In the optimization process, the cost function is the weight of a structure, and a deflection and stress constraints are considered. Design variable are thickness and tapering coefficients which determine the shape of a structure. An existing optimization code is used for solving the formulated problems.

굽힘성형을 위한 금속 샌드위치판재의 내부구조재 개발 (The Development of Inner Structure of Metallic Sandwich Plates for Bending)

  • 성대용;정창균;윤석준;심도식;이상훈;안동규;양동열
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.126-131
    • /
    • 2006
  • Metallic sandwich plates are ultra-light materials not only with high strength and stiffness but also with other multifunctional physical properties. Inner dimpled shell structure can be fabricated by a piecewise sectional forming process, and then bonded with face sheets of the same material by resistance welding. Possible region for bending and limit radius of curvature are defined to compare the formability of sandwich plates. Tests have shown that sandwich plates with inner dimpled shell structure subject to bending have longer possible region for bending and smaller limit radius of curvature than other types of sandwich plates. The proposed inner dimpled shell structure is shown to have better formability of sandwich plates for bending than other types inner structures.

다층 구조 폼 코아 샌드위치 복합재의 기계적 거동 연구 (Mechanical behaviors of multi-layered foam core sandwich composite)

  • 오진오;윤성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.381-382
    • /
    • 2006
  • The mechanical behaviors of multi-layered foam core sandwich composite were investigated through a 3-point bending test. The sandwich specimens were obtained from sandwich panel consisting of aluminum faces and urethane foam core. Three types of sandwich specimens such as a single structure, a double structure and a triple structure were considered. The span of sandwich specimens were varied from 170mm to 350mm. According to the results, the flexural and shear properties of multi-layered sandwich composite were found to be higher than those of single-layered sandwich composite.

  • PDF

하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가 (Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel)

  • 김윤해;최병근;손진호;조영대;엄수현;우병훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

굽힘 성형을 위한 금속 샌드위치 판재의 내부구조재 개발 (The Development of Inner Structure of Metallic Sandwich Plates for Bending)

  • 성대용;정창균;윤석준;심도식;이상훈;안동규;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.301-304
    • /
    • 2005
  • Metallic sandwich plates are ultra-light materials with not only high strength and stiffness but also multifunctional. Inner dimpled shell structure can be fabricated by piecewise sectional forming process, and then bonded with same material face sheets by resistance welding. Tests have shown that sandwich plates with dimpled shell structure subject to bending have more collapse load, energy absorption and deflection before collapse than other types of sandwich plates. Consequently, inner dimpled shell structure can improve formability of sandwich plates for bending.

  • PDF

Performance of sandwich structure strengthened by pyramid cover under blast effect

  • Mazek, Sherif A.
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.471-486
    • /
    • 2014
  • The number of explosive attacks on civilian structures has recently increased. Protection of structure subjected to blast load remains quite sophisticated to predict. The use of the pyramid cover system (PCS) to strengthen sandwich structures against a blast terror has great interests from engineering experts in structural retrofitting. The sandwich steel structure performance under the impact of blast wave effect is highlighted. A 3-D numerical model is proposed to study the PCS layer to strengthen sandwich steel structures using finite element analysis (FEA). Hexagonal core sandwich (XCS) steel panels are used to study structural retrofitting using the PCS layer. Field blast test is conducted. The study presents a comparison between the results obtained by both the field blast test and the FEA to validate the accuracy of the 3-D finite element model. The effects are expressed in terms of displacement-time history of the sandwich steel panels and pressure-time history effect on the sandwich steel panels as the explosive wave propagates. The results obtained by the field blast test have a good agreement with those obtained by the numerical model. The PCS layer improves the sandwich steel panel performance under impact of detonating different TNT explosive charges.

샌드위치 복합재 철도차량 루프구조물의 구조 안전성 평가 및 제작기술 연구 (A Study on Manufacturing Technology and Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure)

  • 신광복;류봉조;이재열;이상진
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.43-49
    • /
    • 2006
  • We have evaluated the structural integrity of a sandwich composite train roof structure that can be a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof structure was 11.45 meters long and 1.76 meters wide. The finite element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-conditioned system. The 3D sandwich finite element model was introduced to examine the structural behavior of the hollow aluminum extrusion frames joined to both sides of the sandwich composite train roof. The results shown that the structural performance of the sandwich composite train roof under loading conditions specified is satisfaction and the use of aluminum reinforced frame and aluminum honeycomb core is beneficial with regard to weight saving and structural performance in comparison with steel reinforced frame and polyurethane foam core. Also, we have manufactured prototype of sandwich composite train roof structure on the basis of analysis results.