• 제목/요약/키워드: Sandwich Plates

검색결과 226건 처리시간 0.024초

트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구 (Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core)

  • 정창균;성대용;양동열;김진석;안동규
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 1: Experimental and analytical study

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong;Wang, Junyan
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.907-927
    • /
    • 2014
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. ULCC was adopted as the core material in the SCS sandwich composite beams to reduce the overall structural weight. Headed shear studs working in pairs with overlapped lengths were used to achieve composite action between the core material and steel face plates. Nine quasi-static tests on this type of SCS sandwich composite beams were carried out to evaluate their ultimate strength performances. Different parameters influencing the ultimate strength of the SCS sandwich composite beams were studied and discussed. Design equations were developed to predict the ultimate resistance of the cross section due to pure bending, pure shear and combined action between shear and moment. Effective stiffness of the sandwich composite beam section is also derived to predict the elastic deflection under service load. Finally, the design equations were validated by the test results.

Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.361-376
    • /
    • 2019
  • In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or stiffened plates and also used in construction of bridges, the wing of airplane.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads

  • Rashad, Mohamed;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.717-725
    • /
    • 2018
  • One of the most important design criteria in military tunnels and armoured doors is to resist the blast loads with minimum structural weight. This can be achieved by using steel sandwich panels. In this paper, the nonlinear behaviour of steel sandwich panels, with different core materials: (1) Hollow (no core material); (2) Rigid Polyurethane Foam (RPF); and (3) Vulcanized Rubber (VR) under free air blast loads, was investigated using detailed 3D nonlinear finite element models in Ansys Autodyn. The accuracy of the finite element model proposed was verified using available experimental test data of a similar steel sandwich panel tested. The results show the developed finite element model can be reliably used to simulate the nonlinear behaviour of the steel sandwich panels under free air blast loads. The verified finite element model was used to examine the different parameters of the steel sandwich panel with different core materials. The result shows that the sandwich panel with RPF core material is more efficient than the VR sandwich panel followed by the Hollow sandwich panels. The average maximum displacement of RPF sandwich panel under different ranges of TNT charge (1 kg to 10 kg at a standoff distance of 1 m) is 49% and 53% less than the VR and Hollow sandwich panels, respectively. Detailed empirical design equations were provided to quantify the maximum deformation of the steel sandwich panels with different core materials and core thickness under a different range of blast loads. The developed equations can be used as a guide for engineer to design steel sandwich panels with RPF and VR core material under a different range of free air blast loads.

A new and simple HSDT for thermal stability analysis of FG sandwich plates

  • Menasria, Abderrahmane;Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.157-175
    • /
    • 2017
  • The novelty of this work is the use of a new displacement field that includes undetermined integral terms for analyzing thermal buckling response of functionally graded (FG) sandwich plates. The proposed kinematic uses only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional higher shear deformation theories (HSDTs). The theory considers a trigonometric variation of transverse shear stress and verifies the traction free boundary conditions without employing the shear correction factors. Material properties of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law variation in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is employed to derive the governing equations as an eigenvalue problem. The validation of the present work is checked by comparing the obtained results the available ones in the literature. The influences of aspect and thickness ratios, material index, loading type, and sandwich plate type on the critical buckling are all discussed.

Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect

  • Imad Benameur;Youcef Beldjelili;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.593-605
    • /
    • 2023
  • This work presents a comparison between analytical and finite element analysis for bending of porous sandwich functionally graded material (FGM) plates. The plate is rectangular and simply supported under static sinusoidal loading. Material properties of FGM are assumed to vary continuously across the face sheets thickness according to a power-law function in terms of the volume fractions of the constituents while the core is homogeneous. Four types of porosity are considered. A refined higher-order shear with normal deformation theory is used. The number of unknowns in this theory is five, as against six or more in other shear and normal deformation theories. This theory assumes the nonlinear variation of transverse shear stresses and satisfies its nullity in the top and bottom surfaces of the plate without the use of a shear correction factor. The governing equations of equilibrium are derived from the virtual work principle. The Navier approach is used to solve equilibrium equations. The constitutive law of the porous FGM sandwich plate is implemented for a 3D finite element through a subroutine in FORTRAN (UMAT) in Abaqus software. Results show good agreement between the finite element model and the analytical method for some results, but the analytical method keeps giving symmetric results even with the thickness stretching effect and load applied to the top surface of the sandwich.

얇은 면재를 갖는 샌드위치 평판의 진동해석 (Vibration Analysis of the Sandwich Plates with very thin faces)

  • 박인규;김익태;손충열
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.134-144
    • /
    • 1993
  • 샌드위치 구조는 두층의 얇고 밀도가 크며 높은 강도와 강성을 갖고 있는 면재와 이에 비해 상대적으로 두껍고 밀도, 강도, 강성이 낮은 심재로 구성되어 서로의 단점을 보완하는 경량의 특수한 형태이다. 본 연구에서는 등방성의 심재에 2장의 면재가 대칭으로 적층된 샌드위치 평판 모델에 대해 Rayleigh-Ritz 방법으로 해석한 후, 고유진동수를 구하였다. 면재는 G.R.P.의 일종인 E-glass Woven Roving 외에 2종류를 사용하였고 심재는 foam core로서 P.V.C. 외에 3종류를 사용하여 면재와 심재의 종류, 두께, 지지조건 등의 변화에 따른 각 모우드의 고유진동수와 모우드 형상들을 구하고 각 조건들이 고유진동수에 미치는 영향을 비교 분석하였다. 본 연구의 해석결과를 유한요소 program인 ADINA의 결과와 비교하였다.

  • PDF

두껍고 비대칭인 FRP면재를 갖는 Sandwich 평판의 구조해석 (A Structural Analysis of Sandwich Plate with Unsymmetrical FRP Thick Faces)

  • 김익태;김기성
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.132-140
    • /
    • 1995
  • 선체의 중량을 감소시키기 위한 구조적인 형식중의 하나가 샌드위치 type이고 고속선의 면재는 F.R.P.와 Kevlar/Epoxy를, 심재로는 P.V.C.foam을 많이 사용한다. 본 연구에서는 면재의 두께가 두껍고 윗면재와 아랫면재의 두께가 다른 비대칭인 경우에 대하여 Rayleigh-Ritz의 에너지방법으로 해석하였다. 그리고 얇은 면재와의 비교를 위하여 등방성이고 중립축에 대칭인 평판을 기준하여 굽힘응력, 전단응력, 국부적인 굽힘응력, 막응력효과를 고려한 응력들을 면재2종류와 심재3종류에 대해서 비교하고 해석하였다.

  • PDF

섬유강화 복합재료, 고분자 포움 및 레진 콘크리트로 구성된 샌드위치 구조 설계를 위한 파라메트릭 연구 (Parametric study on design of sandwich structures composing of fibre reinfoced composites, polymer foam and resin concrete)

  • 김대일;장승환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure for machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance both directional bending stiffnesses at the same time. From the results optimal configuration and materials for high precesion machine tools are proposed.

  • PDF