• 제목/요약/키워드: Sandwich Panels

Search Result 209, Processing Time 0.026 seconds

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

An Experimental Study on Fire Safety Performance of Glass Wool Sandwich Panel (그라스울 샌드위치패널의 화재 안전 성능에 대한 실험적 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.21-27
    • /
    • 2012
  • A real A real scale fire test was performed in accordance with KS F ISO 9705 test method to investigate the combustion characteristics of glass wool sandwich panels. To do this, six kinds of specimens having different density and thickness were examined. The glass sandwich panels were installed inside the room, which had internal dimensions of 2.4 m wide${\times}3.6m$ deep${\times}2.4m$ high. also, combustion characteristic are determined through the exposure of specimens to flame by the propane gas burner has a capacity of 100 kW (10 minutes) and 300 kW (10 minutes) for total 25 minutes of test time. Results of the real sale fire test, it was found that maximum HRR of each specimen was 333.2~365.5 kW, maximum heat flux was 12.4~12.9 kW/$m^2$ And, maximum internal temperature for all specimens was not over $500^{\circ}C$. During the real scale fire test, flash-over didn't occur and the difference by density and thickness of specimen was not found from the results of HRR, heat flux, and internal temperature measurement.

Classification of Fire Causes in Warehouses Using the TRIZ Technique and Analysis of Preventive Measures Accordingto 4M (TRIZ기법에 의한 물류창고의 화재원인 및 4M에 따른 예방대책 분석)

  • Han, Sang-Hun;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2020
  • This study analyzed the causes of warehouse fires using a creative problem-solving technique called TRIZ. It identified preventive measures by applying 4M. The results are as follows. First, this study examined the inconsistency among the causes of warehouse fires using TRIZ. Second, it analyzed human factors and fire prevention measures in warehouses such as safety standards for managers, and methods for the promotion of safety consciousness among workers, and for the reinforcement of construction technology for sandwich panel workers. Third, it identified the mechanical and facility factors and fire prevention measures in warehouses such as safety facilities, the expanded installation of safety devices, the adoption and development of fire suppression equipment, and the deployment of methods to improve the fire resistance of sandwich panels. Fourth, it presented working and environmental factors and fire prevention measures in warehouses such as the tightening of safety precautions and the supervision of working methods, and setting fire partitions both in loading places and based on performance-based design. Finally, it proposed managerial factors and fire prevention measures in warehouses such as specific targeting for firefighting with low fire hazards, reviewing the material quality regulations of non-combustible or higher for sandwich panels in the specific target of firefighting that cannot apply fire safety standards, installing sprinklers in cold storage, and mandating the installation of automated facilities with retroactive application regardless of the floor area in the warehouse with a sandwich panel structure.

Impact Tests and Numerical Simulations of Sandwich Concrete Panels for Modular Outer Shell of LNG Tank (모듈형 LNG 저장탱크 외조를 구성하는 샌드위치 콘크리트 패널의 충돌실험 및 해석)

  • Lee, Gye-Hee;Kim, Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.333-340
    • /
    • 2019
  • Tests using a middle velocity propulsion impact machine (MVPIM) were performed to verify the impact resistance capability of sandwich concrete panels (SCP) in a modular liquefied natural gas (LNG) outer tank, and numerical models were constructed and analyzed. $2{\times}2m$ specimens with plain sectional characteristics and specimens including a joint section were used. A 51 kg missile was accelerated above 45 m/s and impacted to have the design code kinetic energy. Impact tests were performed twice according to the design code and once for the doubled impact speed. The numerical models for simulating impact behaviors were created by LS-DYNA. The external steel plate and filled concrete of the panel were modeled as solid elements, the studs as beam elements, and the steel plates as elasto-plastic material with fractures; the CSCM material model was used for concrete. The front plate deformations demonstrated good agreement with those of other tests. However the rear plate deformations were less. In the doubled speed test for the plain section specimen, the missile punctured both plates; however, the front plate was only fractured in the numerical analysis. The impact energy of the missile was transferred to the filled concrete in the numerical analysis.

Analysis of Sound Transmission Characteristics of Multi-complex Panel for Noise Reduction in High Value-added Vessel Cabin (고부가가치선 선실의 소음 저감용 복합패널의 차음특성 해석)

  • Kwon, Hyun-Wung;Hong, Suk-Youn;Kil, Hyun-Gwon;Kim, Hwa-Muk;Song, Jee-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.13-19
    • /
    • 2012
  • Recently, as the importance of the interior noise in a ship cabin has risen, ship builders have becomeconcerned about the use of noise reduction panels to reduce cabin noise. The results of previous researches have been based on analytical and experimental methods using simple sandwich panels. However, panel structures are becoming more complex to improve the transmission loss. Thus, researches that analyze the transmission loss of a panel are reaching the limit of study. This paper reports on research that was performed to determine the sound transmission characteristics of multi-complex panels applicable to high value-added vessels. It presents comparisons between analytical methods and experimental results by using a mini-reverberant chamber with components of sound attenuation panels, including the core and surface materials. The sound transmission loss of multi-complex panels are also analyzed in terms of the influences of the inside perforate plates and air gap thickness on the attenuation. Finally, the multi-complex panel with the highest noise attenuation is proposed based on the analysis results and experimental results in mini-reverberant chamber, which wereverified using a real-size reverberant chamber.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

The Experimental Study for the Smoke Optical Density and Toxic Gases of Sandwich Panel Insulations(Single Chamber Method) (샌드위치패널 단열재의 연기농도 및 연소독성가스에 대한 실험적 연구(연소챔버법))

  • Park, Soo-Young;Lee, Woo-Seok;Yeo, Han-Seung;Im, Hong-Soon
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.26-32
    • /
    • 2006
  • Nowadays in Korea, KS F 2271 has been using for the test of fire safety performance of sandwich panels. Smoke toxicity test is the test for the toxicity evaluation of smoke and hazardous gas, caused by combustion of building materials and finishing materials. Smoke toxicity can be evaluated by the mean incapacitation time of mice; however this method is not a quantitative way. This test result can be influenced by the health status of mice and test condition. Specific optical density can be quantitatively measured by ISO 5659-2 single chamber method and toxic gases can be quantitatively measured by FTIR analysis. In this study, specific optical density of sandwich panel insulations, which are widely used in Korea, were tested using the ISO 5659-2 single chamber test method and compared with each test. Also, in the second test of three tests for each specimen, FTIR analysis was performed and quantitative test results(HCl, $NO_2$, etc) were compared with each test result.

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

Estimation of Young's and Shear Moduli of a Core in ISB Panel with Woven Metal as Inner Structures (망형 직조 금속을 내부구조체로 가진 ISB 판재의 심재 종탄성 및 전단 계수 예측)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.116-123
    • /
    • 2009
  • The elastic properties of core affect mechanical properties and deformation behaviours of the lightweight sandwich panel. The objective of the present paper is to estimate experimentally Young's and shear moduli of a core in internally structured boned (ISB) panel with woven metal as inner structures using the deflection theory of sandwich beam considered core stiffness. Three points bending experiments were performed to obtain force-deflection curves of the designed ISB panel in each material direction. The elastic and shear moduli of the core in each material direction were estimated from slopes and intercepts of relationships between compliance per the span length and square of the span length, respectively. The results of the estimation showed that the fabric technology of the woven metal affects the variation of the elastic properties in the core. Through the comparison of shear moduli and force-deflection curves of the proposed method and those without considering the core stiffness, it was shown that the core stiffness should be considered to estimate properly the Young's and shear moduli of ISB panels. Finally, the contribution ratio of bending and shear deflections of ISB panels to the total deflection was quantitatively examined.