• 제목/요약/키워드: Sandwich Panel

검색결과 299건 처리시간 0.03초

샌드위치패널 건축물 플래시오버 지연을 위한 화재확산방지플레이트 시공방법 연구 (A Study on Flash Over Delay Effects on Applied Plate-Fire Spread Prevention Method at Sandwich Panels Structure)

  • 김도현;조남욱
    • 한국화재소방학회논문지
    • /
    • 제31권3호
    • /
    • pp.79-87
    • /
    • 2017
  • 샌드위치패널은 양면이 철판이며 단열재로 접착된 특징을 갖는 건축자재로서 시공의 간편성, 자재비용의 경제성 등의 장점으로 공장 및 창고 구조물 등에 사용되고 있다. 그러나 샌드위치패널의 연속적 결합으로 시공되는 패널구조물은 패널과 패널이 연결되는 조인트 부위가 발생하게 된다 조인트부위는 화재시 철판의 용융과 변형으로 화염이 쉽게 유입되며 화재에 취약한 부위이다. 패널 내에 유입된 화염은 급속한 연소로 인해 화재확산을 유발하며 인명 및 재산피해를 발생시킨다. 본 연구에서는 샌드위치패널의 화재확산을 방지하기 위한 화재확산방지플레이트를 개발하였다. 이는 기존 선행연구에서 4면의 패널 접합면을 화재확산방지 재료로 시공하는 방법에서 접합면에 개발 플레이트를 끼우는 방식으로 시공이 용이하게 개선된 것으로서 패널과 패널이 결합되는 연결부에 자립하여 적용 가능하며 화염의 유입 및 화재확산을 방지하도록 고안하였다. 샌드위치패널 시험체에 대해 KS F ISO 13784-1 시험방법의 실물화재시험을 수행하였으며, 패널 연결부에 화재확산방지플레이트의 적용 유무에 따른 연소거동을 파악하고 그 효과를 측정하였다. 시험결과 패널 연결부에 화재확산방지플레이트를 삽입하는 것은 플래시오버의 지연, 시험체의 붕괴방지, 개구부의 온도상승을 지연시키는 것으로 측정되었으며, 효과적으로 패널구조물이 화재안전성을 확보할 수 있는 방안으로 확인되었다. 화재에 취약한 패널 연결부에 시공성과 경제성이 확보된 다양한 방식의 화재확산방지용 시공방법을 적용하는 것은 구조물의 화재안전성을 확보하는데 기여할 것으로 판단된다.

하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구 (A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite)

  • 이재열;신광복;이상진
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Modal analysis of FG sandwich doubly curved shell structure

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.721-733
    • /
    • 2018
  • The modal frequency responses of functionally graded (FG) sandwich doubly curved shell panels are investigated using a higher-order finite element formulation. The system of equations of the panel structure derived using Hamilton's principle for the evaluation of natural frequencies. The present shell panel model is discretised using the isoparametric Lagrangian element (nine nodes and nine degrees of freedom per node). An in-house MATLAB code is prepared using higher-order kinematics in association with the finite element scheme for the calculation of modal values. The stability of the opted numerical vibration frequency solutions for the various shell geometries i.e., single and doubly curved FG sandwich structure are proven via the convergence test. Further, close conformance of the finite element frequency solutions for the FG sandwich structures is found when compared with the published theoretical predictions (numerical, analytical and 3D elasticity solutions). Subsequently, appropriate numerical examples are solved pertaining to various design factors (curvature ratio, core-face thickness ratio, aspect ratio, support conditions, power-law index and sandwich symmetry type) those have the significant influence on the free vibration modal data of the FG sandwich curved structure.

실대규모 화재시험(ISO 13784-1)을 적용한 샌드위치 패널 시스템의 연소성능 분류 (Classification of Reaction-to-Fire's Performances on Sandwich Panel Systems by Applying to ISO 13784-1 Fire Tests)

  • 박계원;임홍순;정재군;이길용;김정욱;정정호;이우석;김운형
    • 한국화재소방학회논문지
    • /
    • 제23권2호
    • /
    • pp.20-26
    • /
    • 2009
  • 본 연구에서는 ISO 9705(room corner test)에 의한 샌드위치 패널 화재 시험방법을 보완한 ISO 13784-1(room corner test for sandwich panel building systems) 시험방법을 적용하여 샌드위치 패널연소특성 및 성능을 분석하였다. 4종의 샌드위치 패널을 시험체로 선택하였으며, 시험 후 열방출율, 연기 발생율, FIGRA, SMOGRA 결과값을 중심으로 각 패널의 연소 성능을 분석하였으며, 최종적으로 유럽 Eurefic Research Program 및 EN 13501-1에서 제시하는 분류기준에 적용하여 등급분류를 시도하였다.

경화공정 및 수분흡수에 따른 복합재료 하니콤 샌드위치 판넬의 접합강도특성 연구 (Bondline Strength Evaluation of Honeycomb Sandwich Panel For Cure Process and Moisture Absorption)

  • 최흥섭;전흥재;남재도
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.115-126
    • /
    • 2001
  • In this paper, through a series of comparative experiments, effects of two different cure processing methods, cocure and precure, on the mechanical properties of honeycomb core materials for aircraft applications are considered. Mass of moisture accumulated into the closed cells of the sandwich panel specimen from the measured mass of moisture diffused to the full saturation state into the elements(skin, adhesive layer, Nomex honeycomb), consisting the honeycomb sandwich specimen has been calculated. Water reservoir of 70$\^{C}$ was used to have specimens absorb moisture to see the influence of moisture absorbed into sandwich panel on its mechanical properties. For the repair condition holding for 2 hours at 177$\^{C}$(350℉) temperature, a pressure due to the vapor expansion in each cell of the sandwich panel, which may result in the local separation of the interface between laminated skin and the surface of the honeycomb, has been estimated by vapor pressure-temperature relation from the thermodynamic steam table and compared to the pressure from the ideal gas state equation. The bonding strengths of the laminated skins on the flat surface of the Nomex honeycomb have been compared by the flatwise tension test and climbing drum peel test performed at room temperature for dry, wet and wet-repair specimens, respectively.

Pultrusion 복합 샌드위치 패널의 신뢰성 평가 (Reliability Evaluation on Pultrusion Composite Sandwich Panel)

  • 이학성;김은성;오제하;김동기;이주영;강신재
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.414-420
    • /
    • 2013
  • Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

샌드위치 패널의 외부 색상과 내부 심재에 따른 이면 온도 변화 (The Back Side Temperature Variation According to Color of Sandwich Panel and Internal Core Material)

  • 박준서;김봉주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.25-26
    • /
    • 2023
  • The internal core material and external color of a sandwich panel have a significant impact on the performance of the sandwich panel. For use on roofs and walls, the internal core material and external color must be considered. Therefore, the surface and back side temperatures were measured for each exterior color and inner core material type. For the internal core materials, urethane foam and Expanded Poly Styrene(EPS), which are core materials mainly used in sandwich panels, were selected. As colors, black and ivory were selected according to brightness, and a total of five colors were selected: red, blue, and green, which are the three primary colors of light. As a result, there were differences in surface and temperature depending on the external color and type of internal core material. Regardless of the color, the temperature was measured lower for panels with urethane foam than for panels with an internal core of EPS. This is believed to have been influenced by the difference in thermal conductivity of urethane foam being 0.023W/(m·K) and that of EPS being 0.032W/(m·K). In addition, panels with a black exterior color were found to have higher surface and back temperatures than panels of other colors, and ivory-colored panels had lower back temperatures regardless of the core material. This is proportional to the brightness and light-absorbing characteristics.

  • PDF

투과 소음 저감을 위한 샌드위치 패널 최적 설계 (Optimal design of sandwich panel for transmission noise reduction)

  • 윤홍근;이진우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.116-118
    • /
    • 2014
  • A shape optimization problem is formulated to optimally design aluminum sandwich panel, which is used for high speed railway vehicle. An aluminum volume used in the panel is selected as a design objective with constraints on the stiffness and the transmission loss value. The formulated shape optimization problem is solved for a well -selected initial shape. The stiffness and transmission loss value of the obtained optimal shape are compared with those of the previously-reported panel.

  • PDF