• Title/Summary/Keyword: Sandstone

Search Result 340, Processing Time 0.025 seconds

Numerical study on mechanical and failure properties of sandstone based on the power-law distribution of pre-crack length

  • Shi, Hao;Song, Lei;Zhang, Houquan;Xue, Keke;Yuan, Guotao;Wang, Zhenshuo;Wang, Guozhu
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.421-434
    • /
    • 2019
  • It is of great significance to study the mechanical properties and failure mechanism of the defected rock for geological engineering. The defected sandstone modeling with power-law distribution of pre-cracks was built in this paper by Particle Flow Code software. Then the mechanical properties of sandstone and the corresponding failure process were meticulously analyzed by changing the power-law index (PLI) and the number of pre-cracks (NPC). The results show that (1) With the increase of the PLI, the proportion of prefabricated long cracks gradually decreases. (2) When the NPC is the same, the uniaxial compressive strength (UCS) of sandstone increases with the PLI; while when the PLI is the same, the UCS decreases with the NPC. (3) The damage model of rock strength is established based on the Mori-Tanaka method, which can be used to better describe the strength evolution of damaged rock. (4) The failure mode of the specimen is closely related to the total length of the pre-crack. As the total length of the pre-crack increases, the failure intensity of the specimen gradually becomes weaker. In addition, for the specimens with the total pre-crack length between 0.2-0.55 m, significant lateral expansion occurred during their failure process. (5) For the specimens with smaller PLI in the pre-peak loading process, the concentration of the force field inside is more serious than that of the specimens with larger PLI.

The Weathering and Chemical Composition of Young Residual Entisols in Korea (잔적 암쇄토의 화학조성과 풍화도)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sun-Kwan;Jo, In-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2001
  • The weathering rates and change of chemical composition of 6 residual Entisols derived from granite, granite-gneiss, limestone, sandstone, shale, amd basalt in Korea were studied. The chemical composition of each profile with parent rocks were determined using XRF with the physico-chemical properties and the morphology of soils. In the A horizons of all the soils except Euiseong series, the content of clay, organic matter and cation exchange capacity(CEC) showed higher than those of C horizon, but bulk density and pH showed lower than C horizon. Clay content in the soil from sandstone was decrease with soil depth, which may caused by the elluriation. In total element analysis. $SiO_2$ was high in the soil from granite. granite-gneiss, sandstone and compare with basalt and limestone. $Fe_2O_3$ and MgO was high in the soil from basalt, limestone and shale compare with granite. granite-gneiss and sandstone. And ignition loss was particularly high in the soil from basalt and limestone. The rate of element loss was higher in base cations(Ca, K, Mg, Na) than Si, Al, Fe in the soils. The concentrations of $TiO_2$ in the A horizon compare with that of the C horizon was due to resulting from losses of other less stable elements existed. Considering with relative rate of each elements in soils, $SiO_2$ and $Al_2O_3$ which originated from sandstone and granite, granite-gneiss, sandstone, shale, and basalt were lost higher than those from lime tone, but loss of basic cations were more in the soil from limestone which may be rapid weathering of calcite. The magnitude of losses of the overall elements were increased in the order of the soils from sandstone and granite ${\gg}$ limestone and shale) granite-gneiss and basalt.

  • PDF

Study on deformation law of surrounding rock of super long and deep buried sandstone tunnel

  • Ding, Lujun;Liu, Yuhong
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • The finite difference software Flac3D is used to study the influence of tunnel burial depth, tunnel diameter and lateral pressure coefficient of original rock stress on the stress and deformation of tunnel surrounding rock under sandstone condition. The results show that the maximum shear stress, the radius of the plastic zone and the maximum displacement in the surrounding rock increase with the increase of the diameter of the tunnel. When the lateral pressure coefficient is 1, it is most favorable for surrounding rock and lining structure, with the increase or decrease of lateral pressure coefficient, the maximum principal stress, surrounding displacement and plastic zone range of surrounding rock and lining show a sharp increase trend, the plastic zone on the lining increases with the increase of buried depth.

Physical, mechanical and hydraulic properties of Inada granite and Shirahama sandstone in Japan

  • Zhang Ming;Takeda Mikio
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.206-213
    • /
    • 2003
  • Laboratory testing of representative rock specimens is of fundamental necessity for the successful design and/or assessment of facilities associated with many kinds of underground exploitation, including the geological disposal of radioactive nuclear waste. As a fundamental and systematic study, a series of measurements of the physical, mechanical and hydraulic properties of Inada granite and Shirahama sandstone, two rock types that are widely available in Japan, have been performed. This paper presents the results of a study of the effective porosity, density, compressive and shear wave velocity, unconfined compressive strength and permeability of the two rocks. The anisotropy and the effects of confining pressure on the permeability of the rocks, as well as the relationships among the physical, mechanical and hydraulic properties, are also investigated and discussed.

  • PDF

Experimental investigation of the influence of salinity gradient on low-concentration surfactant flooding in Berea sandstone

  • Ebaga-Ololo, Jestril;Chon, Bo Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.355-363
    • /
    • 2018
  • There are serious issues with the application of surfactant flooding as a third recovery method, such as surfactant slug losses. In this study,the impact of the salinity gradient on the remobilization of oiltrapped in Berea sandstone was investigated by emphasizing the surfactant adsorption gradient and phase behavior to determine the optimal salinity of the chosen surfactant concentration for investigating the salinity gradient. Three salinity-gradient schemes were applied to six cores saturated with light and heavy oils. The positive salinity gradient provided the best recovery results with an in situ microemulsion formation that could be observed in the fluid collector.

Distribution of Heavy Metals and Hydrocarbons Resistant Bacteria at Pohang Area (포항지역의 중금속과 탄화수소 내성균 분포)

  • 김갑정;이인수;박경량
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.339-347
    • /
    • 1998
  • As a part of a study on the development of microbiological methods for petroleum exploration, the distribution of the avarafe survival rate for heterotrophs to various heavy metal ions and hydrocarbons were surveyed and compared by the use of plate count method. In consequence of the avarage survival rate to heavy metal ions(2 hours treatment) and hydrocarbons(1 hour treatment) for heterotrophs isolatinf from soil samples(50cm depth) which located in Doum mountain(A, B and D site) and Aedowon(C site) at Pohang area, the survival rate of heterotrophs for nickel(600ppm), cobalt(500ppm), cadmiun(100ppm), mercury(20ppm), zinc(400 ppm) and lead(500ppm) were 73.7%, 82.6%, 76.8%, 9.5%, 77.8% and 73.6% at A site and 67.9%, 82.5%, 86.0%, 5.8%, 82.5% and 91.7% at B site, 87.8%, 79.8%, 87.5%, 7.0%, 84.2% AND 47.7% AT c SITE, AND 71.8%, 76%, 85.9%, 1,2%, 79.6% AND 88.3% AT D site, respectively. Also the survival rate of heterotrophs from A,B,C and D site to pentane and hexane(each concentration is 20%) were 26.7% and 42.5%, 11.8% and 8.1%, 44.3% and 36.2%, and 12% and 3.5%, respectively. therefore, heterotrophs from B and D site that alternated gravelstone, muddy sandstone and sandstone were higher survival rate to the heavy metal ions than heterotrophs from A site which mainly composed gravelstone. Also, heterotrophs from C site which mainly composed muddy sandstone and once produced natural gas were showed relatively higher survival rate to the heavy metal ions and hydrocarbons than the other sites. Consequently, we confirmed that the distributions of tolerant heterotrophs to heavy metal ions and hydrocarbons were differ from the lithological compositon.

  • PDF

Evaluation of Pore Size Distribution of Berea Sandstone using X-ray Computed Tomography (X-ray CT를 이용한 베레아 사암의 공극크기분포 산정)

  • Kim, Kwang Yeom;Kim, Kyeongmin
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.353-362
    • /
    • 2014
  • Pore structures in porous rock play an important role in hydraulic & mechanical behaviour of rock. Porosity, size distribution and orientation of pores represent the characteristics of pore structures of porous rock. While effective porosity can be measured easily by conventional experiment, pore size distribution is hard to be quantified due to the lack of corresponding experiment. We assessed pore size distribution of Berea sandstone using X-ray CT image based analysis combined with associated images processing, i.e., image filtering, binarization and skeletonization subsequently followed by the assessment of local thickness and star chord length. The aim of this study is to propose a new and effective way to evaluate pore structures of porous rock using X-ray CT based analysis for pore size distribution.

Measurement of Mode I Fracture Toughness of Rocks with Temperature and Moisture Conditions at Low Temperature (저온하에서의 온도 및 함수 조건에 따른 암석의 모드 I 파괴인성 측정)

  • Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.352-361
    • /
    • 2001
  • Mode I fracture toughness ( $K_{IC}$) of the frozen rocks and that of the frozen-thawed rocks were obtained by using BDT and CCNBD specimens. The test temperatures ranged from +$25^{\circ}C$ to -16$0^{\circ}C$. Wet and air-dry specimens of granite and sandstone were used in order to investigate the effect of water and porosity on fracture toughness. The SEM images of the frozen-thawed rocks were also analysed to check the density of thermal cracks. The $K_{IC}$ of the frozen rocks increased as the test temperature went down. The rate of increase was higher in wet condition than in dry condition and the rate of increase for wet granite was higher than that for wet sandstone. The $K_{IC}$ of the frozen-thawed rocks varied within 15% from the $K_{IC}$ of the rocks at room temperature. After one freeze-thaw process, thermal crack occurred in granite but no thermal cracks occurred in sandstone. And the crack density was increased as the temperature went down.n.

  • PDF

Variation of the Physical-microstructural Properties of Sandstone and Shale Caused by CO2 Reaction in High Pressure Condition (고압 이산화탄소 반응에 의한 사암과 셰일의 물리적-미세구조적 변화)

  • Park, Jihwan;Son, Jin;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2016
  • Underground $CO_2$ storage technology is one of the most effective methods to reduce atmospheric $CO_2$. In this study, $CO_2$ storage condition was simulated in the laboratory. Sandstone and shale specimens were saturated in 1M NaCl and were reacted at $45^{\circ}C$, 10 atm for 4 weeks. The physical and microstructural properties of rock specimens were measured. Variations on physical properties of shale specimens were bigger than those of sandstone specimens, such as volume, density, elastic wave velocity, Poisson's ratio and Young's modulus. Microstructure were analyzed using X-ray computed tomography. Total number of pores were decreased, and average volume, average area and average equivalent diameter of each pore were changed after $CO_2$ reaction. Swelling and leakage of clay mineral caused by $CO_2$-mineral reaction were the reason of changes. The results of this study can be applied to predict the physical and microstructural changes in underground $CO_2$ storage condition.

A Suggested Method for Predicting Permeability of Porous Sandstone Using Porosity and Drying Rate (공극률과 건조율을 이용한 다공질 사암의 투과도 추정방법 제안)

  • Ko, Eunji;Kim, Jinhoo
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.121-128
    • /
    • 2014
  • As the permeability is an important parameter to characterize the ease with which a porous medium transmits fluids, it is usually obtained by fluid flow experiment using core samples. In order to measure the permeability, however, an experimental apparatus is required and it might take long measurement time, especially for tight samples. In this study, the relationship between permeability and porosity as well as drying rate has been investigated to predict the permeability without a series of measuring experiments. Porosity is measured by drying monitoring method, which measures weight variation continuously while drying surface-dried saturated sample, and drying rate is obtained from weight variation ratio with respect to the water saturation. The total of 6 Berea sandstone samples, which have a permeability range of 70 to 670 mD, were used in this work, and a new and empirical equation which could predict permeability of porous sandstone by using porosity and drying rate were obtained through regression analysis.