• Title/Summary/Keyword: Sanding process

Search Result 22, Processing Time 0.026 seconds

A Study on the Painting Characteristics of Waterborne Paint for Automotive Refinish (자동차 보수도장용 수용성 도료의 도장특성에 관한 연구)

  • Kim, Soon-Kyung;Kim, Moon-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.68-75
    • /
    • 2008
  • This paper investigates the correlation between surface roughness and gloss of aluminium sheet painted waterborne paint. One customer criterion of automotive quality is the as-painted appearance of the final products. Especially, the current emphasis on control of surface roughness of sanded aluminium sheet has been prompted by the automotive industry's concern with the as-painted appearance. because the influence of such characteristics on paintability, and painted appearance is important in defining outer panel requirements for automobile. This paper is dedicated primarily to the issue of painted appearance and reviews for improvement of roughness. The conclusions are obtained as follows ; 1) Painted aluminium sheet appearance is strongly affected by surface roughness of base-metal and influenced by sand paper and sanding method. 2) The painted appearance of aluminium sheets was determined and related to surface roughness parameters, combination of sand paper.

  • PDF

Fabrication and Characteristics of In-Plane Type Micro Piezoelectric Micro Grippers with Pneumatic Lines for Biological Cells and Micro Parts Handling (바이오 셀 및 마이크로 부품 handling을 위한 pneumatic line을 갖는 in-plane 형 마이크로 압전 그리퍼 제조 및 특성)

  • Park J.S.;Park K.B.;Shin K.S;Moon C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.501-502
    • /
    • 2006
  • In-plane type micro piezoelectric micro grippers with pneumatic lines for manipulation biological cells and micro parts were designed, fabricated, and characterized. Micro grippers were fabricated through the final micro-sanding process after wafer level bonding between the etched 4' Si wafer with pneumatic channels and 4' glass wafer. Displacements between two jaws of fabricated micro grippers were linearly increased with applying voltages to piezoelectric actuator. In the case of applying 80 V, the displacement between two jaws was $160{\mu}m$. Using fabricated micro grippers, manipulation tests for biological cell and micro parts with the sizes less than $100{\mu}m$ are in process.

  • PDF

Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative (고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선)

  • Jeong Byung-Hun;Seo Tae-Seok;Hong Myung-Pyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.413-416
    • /
    • 2005
  • The study has been performed on the improvement of bonding process and bond strength of HTPB propellant and liner using a polymeric curative. In case of liner using polymeric curative prepared from reaction of HTPB and TDI, migration of curative was decreased at bond interface. So EPDM insulation sanding and Desmodur RE coating process could be omitted in motor case preparation and bond strengths between the HTPB propellant and liner were increased. Also deterioration phenomena of bond strength could not be observed in accelerated aging test.

  • PDF

Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative (고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선)

  • Jeong Byung-Hun;Seo Tae-Seok;Hong Myung-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 2006
  • The study has been performed on the improvement of bonding process and bond strength of HTPB propellant and liner using a polymeric curative. In case of liner using polymeric curative prepared from reaction of HTPB and TDI, migration of curative was decreased at bond interface. So EPDM insulation sanding and Desmodur RE coating process could be omitted in motor case preparation and bond strengths between the HTPB propellant and liner were increased. Also deterioration phenomena of bond strength could not be observed in accelerated aging test.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Effect of Sugar Particle Size and Level on Cookie Spread (설탕의 粒子 크기와 使用量이 쿠키의 展性이 미치는 影響)

  • Koh, Won-Bang;Noh, Wan-Seob
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.2
    • /
    • pp.159-165
    • /
    • 1997
  • The primary objective of this study was to learn the effect of various sugar particle size and level on cookie spread, The effect of sugar particle size and level on sugarsnap cookie spread was studied. Three different particle sized sugars; powered sugar, granulated sugar and sanding sugar, were used for the cookie test baking with five different sugar levels; 30, 45, 60, 75 and 90% based on the weight of flour. In mixing process, 5 minutes of creaming time was used for cream making and then the specific gravity of cream was measured on the basis of each different sugar particle size and level. In the result, the specific gravity of cream was influenced by sugar particle size and sugar level. However, the specific gravity of cream had no influence on cookie dough specific gravity. Cookie spread was influenced by sugar particle size and sugar level. Greater cookie spread was obtained by decreasing sugar particle size and increasing sugar level resulted in increased spread. Therefore, selection of suitable sugar particle size and its use level can be factors in controlling spread and imparting desired packaging characteristics.

  • PDF

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Artificial Neural Network-based Prediction Model to Minimize Dust Emission in the Machining Process

  • Hilal Singer;Abdullah C. Ilce;Yunus E. Senel;Erol Burdurlu
    • Safety and Health at Work
    • /
    • v.15 no.3
    • /
    • pp.317-326
    • /
    • 2024
  • Background: Dust generated during various wood-related activities, such as cutting, sanding, or processing wood materials, can pose significant health and environmental risks due to its potential to cause respiratory problems and contribute to air pollution. Understanding the factors influencing dust emission is important for devising effective mitigation strategies, ensuring a safer working environment, and minimizing environmental impact. This study focuses on developing an artificial neural network (ANN) model to predict dust emission values in the machining of black poplar (Populus nigra L.), oriental beech (Fagus orientalis L.), and medium-density fiberboards. Methods: The multilayer feed-forward ANN model is developed using a customized application built with MATLAB code. The inputs to the ANN model include material type, cutting width, number of blades, and cutting depth, whereas the output is the dust emission. Model performance is assessed through graphical and statistical comparisons. Results: The results reveal that the developed ANN model can provide adequate predictions for dust emission with an acceptable level of accuracy. Through the implementation of the ANN model, the study predicts intermediate dust emission values for different cutting widths and cutting depths, which are not considered in the experimental work. It is observed that dust emission tends to decrease with reductions in cutting width and cutting depth. Conclusion: This study introduces an alternative approach to optimize machining-process conditions for minimizing dust emissions. The findings of this research will assist industries in obtaining dust emission values without the need for additional experimental activities, thereby reducing experimental time and costs.

The Effect of Pre-Treatment Methods for the Life Time of the Insoluble Electrodes (불용성 전극의 전처리 방법이 전극의 수명에 미치는 영향)

  • Park, Mi-Jung;Lee, Taek-Soon;Kang, Meea;Han, Chi-Bok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.291-298
    • /
    • 2016
  • Electrochemical water treatment process as a useful treatment method for the removal of non-degradable matter has been consistently studied for several decades. Key process of electrochemical water treatment are oxidation reaction from an anode and reduction from a cathode. In this study, the effect of pre-treatment methods in the insoluble electrode manufacturing process for the water treatment has been evaluated for the life time of electrode The results of this study showed that pre-treatment methods of a base metal such as surface roughness, clean method and interlayer formation influenced to life time of electrode when the same condition (catalyst electrode layer coating method and material system) was applied for pre-treatment methods. This study was conducted by using $IrO_2/Ti$ electrode In the test of sand-blasting process, an electrode manufactured by using sanding media of different sizes resulted in the most effective electrode life time when the size of alumina was used for $212{\sim}180{\mu}m$ praticle size (#80). The most effective method was considered using arc plasma in the additional roughness control and cleaning process, sputtering method to form Ta type interlayer formation process.

Diamond Crystal Growth Behavior by Hot Filament Chemical Vapor Deposition According to Pretreatment Conditions

  • Song, Chang Weon;You, Mi Young;Lee, Damin;Mun, Hyoung Seok;Kim, Seohan;Song, Pung Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.241-248
    • /
    • 2020
  • The change of the deposition behavior of diamond through a pretreatment process of the base metal prior to diamond deposition using HFCVD was investigated. To improve the specific surface area of the base material, sanding was performed using sandblasting first, and chemical etching treatment was performed to further improve the uniform specific surface area. Chemical etching was performed by immersing the base material in HCl solutions with various etching time. Thereafter, seeding was performed by immersing the sanded and etched base material in a diamond seeding solution. Diamond deposition according to all pretreatment conditions was performed under the same conditions. Methane was used as the carbon source and hydrogen was used as the reaction gas. The most optimal conditions were found by analyzing the improvement of the specific surface area and uniformity, and the optimal diamond seeding solution concentration and immersion time were also obtained for the diamond particle seeding method. As a result, the sandblasted base material was immersed in 20% HCl for 60 minutes at 100 ℃ and chemically etched, and then immersed in a diamond seeding solution of 5 g/L and seeded using ultrasonic waves for 30 minutes. It was possible to obtain optimized economical diamond film growth rates.