• Title/Summary/Keyword: Sand iron bar

Search Result 3, Processing Time 0.024 seconds

A Study on the Metallurgical Characteristics for Sand Iron Ingot Reproduced by the Traditional Iron-making Method on Ancient Period under the Neutron Imaging Analysis (중성자 영상 분석을 활용한 고대 제철법 재현 사철강괴의 금속학적 특성 연구)

  • Cho, Sung Mo;Kim, Jong Yul;Sato, Hirotaka;Kim, TaeJoo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.631-640
    • /
    • 2019
  • The purpose of this study was to compare analytical results of sand iron bars reproduced by the traditional iron-making method through a destructive analysis and a non-destructive analysis. For these studies, we produced two types of samples. One was sample(SI-A), a part of the sand iron bar for destructive analysis. The other was SI-B(9 ㎠) for non-destructive analysis. A metallurgical microscope and scanning electron microscope were used for the destructive analysis, and neutron imaging analysis with the Hokkaido University Neutron Source (HUNS) at Hokkaido University, Japan, was used for the non-destructive analysis. The results obtained by destructive analysis showed that there was ferrite and pearlite of fine crystallite size, and some of these showed Widmanstätten ferrite microstructure grown within the pearlite and coarse ferrite at the edge of the specimen. The results from the neutron imaging analysis showed that there was also ferrite and pearlite with 3 ㎛ α-Fe of BCC structure. Based on these results, neutron imaging analysis is capable of identifying material characteristics without destroying the object and obtaining optimal research results when applying it to objects of cultural heritage.

An Experimental Study on the Effect of Corrosion Protection by Tighting Concrete Used Fly-ash and Silica Fume (Part2, In the case of Steel Bar s Corrosion) (콘크리트 밀실화에 의한 염해대책 및 방청효과에 관한 실험적 연구 (제2보, 철근의 부식 현황을 중심으로))

  • 이상수;김진만;남상일;김문한;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.148-151
    • /
    • 1994
  • Up to now, sea sand without complete removal of salt is being used in the construction works because there is little satisfactory counterplan for the substitute aggregate. In the case that such sea sand is used in the reinforced concrete, the residual salt gives rise to deterioration phenmenon and iron corrosion, reducing durability of the ferro-concrete structures. The paper, an experimental study on the effect of corrosion protection by tighting concrete used SF and FA, is to investigate general steel bar's corrosion and to develop concrete using sea sand economically after it is analyzed and examinated ratio of the corrosion area affected by the autoclave cycle. As a test results, as for corrosion area ratio, it is very effective to use admixrutes such as SF and FA which decrease corrosion area remarkably with increasing the amounts of admixtures. Accordingly the use of admixtures is advantageous for tightening concrete and has an effect of salt damage prevention and rust protection in concrete used sea sand.

  • PDF

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou;Zhi Ding;Jinkun Huang;Xinan Yang;Mingjie Ma
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.51-69
    • /
    • 2024
  • Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.