• Title/Summary/Keyword: Sand compaction pile (SCP)

Search Result 74, Processing Time 0.025 seconds

Estimation of Coefficient of Earth Pressure At Rest During SCP Installation by Drained Triaxial Compression Test (배수삼축압축시험을 통한 SCP 시공과정 중 정지토압계수 평가)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.93-101
    • /
    • 2012
  • SCP is a construction method that maximizes the effects of ground improvement by creating sand piles, which are formed by the compaction within soft ground. SCP is mainly used for consolidation and drain effects in clayey soils, and as a liquefaction countermeasure through effects such as compaction in loose sandy soils. In the design of SCP, if the sand piles with high stiffness are not taken into account, it can become a design that overly considered safety, and increased construction costs are highly likely to cause economic disadvantages. The changes in stress conditions and compaction mechanisms in the subsurface have been identified to a certain extent by study findings to date. However, the studies that considered SCP and in-situ ground as composite ground are fairly limited, and therefore, those studies have not achieved enough results to fully explain the relevant topics. In this study, the ground improved by SCP was regarded as the composite ground that consists of SCP and in-situ ground. Moreover, employing a CID test, this study examined the changes in the stress conditions of in-situ ground according to the installation of SCP through the relations between $K_0$ and SCP replacement ratio. At the same, whether the SCP installation procedure can be recreated in a laboratory was examined using a cyclic triaxial test. According to the test results, the changes in the stress conditions of the original ground occurred most largely in an initial stage of SCP installation, and after a certain time point, the vibration for SCP installation did not have a great influence on the changes in the stress conditions of the ground. Moreover, in order to recreate the behaviors of in-suit ground according to SCP in a laboratory, cyclic loading, which corresponds to casing vibration, was concluded to be essentially required.

Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings (연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험)

  • Song, MyungGeun;Bae, WooSeok;Ahn, SangRo;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.5-15
    • /
    • 2011
  • In this study, centrifuge model tests were performed to investigate stress concentration ratio, stress characteristics of soft clay ground improved by granular compaction piles with changes of piles type, loading condition and area replacement ratio. From the results of rigid loading tests, while vertical stresses acting on clay ground is similar, vertical stresses acting on GCP is larger than those acting on SCP with same replacement ratio. Also, average stress concentration ratio is increased proportionally with increasing the area replacement ratio of GCP and SCP. It was evaluated that average stress concentration ratio of soft clay ground improved by GCP is larger than that of SCP. As a result of flexible loading tests, stress concentration ratio is the highest when replacement ratio of GCP and SCP is 40%. Average stress concentration ratio of soft clay ground improved by GCP is a little more higher than is improved by SCP.

Behavior characteristics of Soft Ground Improved by Granular Pile (Granular Pile에 의해 개량된 연약지반의 거동특성)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.63-72
    • /
    • 2001
  • As construction cases on soft ground are increasing, the necessity of ground improvement is also increasing. Granular pile is one of the methods for soft clay and for loose sandy soil. In our country, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such that crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, and settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar pore water pressure condition. Therefore, crushed-stone is determined to be appropriate as substitute for sand.

  • PDF

Improvement Effects of Soft Ground by Granular Pile (Granular Pile에 의한 연약지반의 개량효과)

  • 천병식;김백영
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.43-54
    • /
    • 2002
  • As construction cases of structure are increasing in the soft ground, the necessity of ground improvement is also increasing. Granular pile is one of the improvement methods for soft ground and for loose sandy soil. In domestic, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such as crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, md settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar fore water pressure condition. Therefore, crushed-stone is determined to be appropriate as the substitute for sand.

Analysis of Ground Improvement Effect of Low Vibration Sand Compaction Pile Method (저진동 모래다짐말뚝(LVSCP)의 지반개량효과 분석)

  • Kim, Jong-Kook;Cha, Jun-Tae;Lee, Jae-Chang;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1234-1242
    • /
    • 2010
  • In this study, the effect of noise and vibration, and influence of ground improvement are evaluated and its application is analyzed through the example of SCP designed at ground improvement in Song-Do international city. consequently, it showes even comfortable result that it is about 5.0m of inner space, when the LVSCP method is applied, rather than that it is about 30m of inner space when the existing SCP is applied in vibration control standards 2.0mm/sec. In the noise, now that the many differences according to environmental factors like other equipment noise, limited space and so on at the time of the construction by LVSCP method are coming out, so we think that appro itate measures are needed according to surroundings. By the way, when it comes to the estimation of the ground improvement work before and after an improvement of LVSCP method, its result shows that it is satisfacttion to all the standards of compaction control in dregded and reclaimed ground and sedimentary clay layer.

  • PDF

Experiments of Oyster-shell Mixed with Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 지반개량을 위한 굴패각-모래 혼합토 실험연구)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Chae, Kwang-Seok;An, Young-Chon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.162-169
    • /
    • 2004
  • In order to investigate a recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including N-value, confined compression and shear strength for oyster shell mixed soils were quantitatively examined. Experimental results show that the oyster shell mixed soils are lighter than sand in weight, and have similar characteristics of shear strength with sandy soils. Based on the experimental results, it is highly judged that crushed oyster-shell can be a substitute of sand as the SCP method.

  • PDF

Evaluation of Stability about Lateral Soil Movement of Bridge Abutment Constructed on Soft Ground (연약지반 위에 시공되는 교대의 측방유동에 대한 안정성 평가)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Jeon, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper stability about lateral soil movement of bridge abutment constructed on the soft ground, reinforced with the sand compaction pile (SCP) and the preconsolidaton methods, was evaluated by using the centrifuge testing facility which stress conditions in field could be reconstructed in the laboratory. The layouts of model such as ground condition, sand compaction piles and abutment was determined on the basis of similitude law with the reduced scale of 1/200. Construction sequences of installing SCP, preparing reclaimed ground, preconsolidating ground and building the piled bridge abutment were reconstructed during centrifuge modelling and measurements of movement were followed in each sequence. From analyzing the results of measuring movements of the model abutment and the ground, measured lateral movement of model abutment was found to be within the allowable value so that stability of abutment against lateral sliding was secured.

  • PDF

A Numerical Study on the Prevention of Clogging in Granular Compaction Pile (쇄석다짐말뚝에 발생하는 간극막힘 저감방안에 관한 수치해석적 연구)

  • Jeong, Jaewon;Lee, Seungjun;Park, Nowon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • Recently, engineering problems such as long-term settlement, differential settlement, and the resultant structural damage, have been frequently reported at construction sites. Use of Sand Compaction Piles(SCP) and Granular Compaction Piles(GCP) are good at remedying existing problems, improving bearing capacity and promoting consolidation. However, such compaction piles have the potential for clogging, which would limit their usability. Investigations into the potential for clogging in SCP, GCP, and GCP mixed with sand has not been thoroughly conducted and is the objective of this current study. Large scale direct shear tests were performed on sections of SCP, GCP, and sand mixed GCP to evaluate bearing capacity. Discrete Element Method analyses were conducted with PFC3D and Finite Element Analyses were conducted with MIDAS GTS to propose an algorithm to help reduce clogging in the granular compaction piles. Results from the large scale direct shear test and multiple simulations suggest a 70% gravel and 30% sand mixing ratio to be optimal for bearing capacity and reducing clogging.

Behavior of Soft Ground Improved with Fully-Partly Penetrated Sand Compaction Piles (관통-미관통 모래다짐말뚝으로 개량된 연약지반의 거동)

  • Jeong, Geunchae;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.91-99
    • /
    • 2012
  • This study describes the investigation based on centrifuge model tests for the clay ground improved by sand compaction pile. In order to clarify the failure behavior of composite ground improved by partly and fully penetrated SCPs. And, in order to compare the effect of the penetration ratio and the replacement area ratio, nine of the centrifuge tests were carried out. From the test results, settlement reduce ratio in the fully penetrated SCPs ground is bigger than that in the partly penetrated SCPs ground. It is also evaluated that angle of the failure of composite ground improved by SCP are 26, 25, $34^{\circ}$ for As=10%, 22, $29^{\circ}$ for As=30%. And as a result of rigid loading tests, surface displacement decreases linearly with the partly penetration ratio increased.

Behavioral Characteristics of Improved Ground by Fully Penetrated and Partially Penetrated SCP according to Construction Stage (관통SCP와 미관통SCP로 개량된 지반의 시공단계별 거동 특성)

  • Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.51-57
    • /
    • 2012
  • In this study, numerical analysis was carried out for both partially penetrated SCP(sand compaction pile) and fully penetrated SCP constructed into the ground. Midas GTS was used as a FEM analysis program, which is widely used in geotechnical engineering. For the analysis, ground displacement, effective stress and pore water pressure at the time both just after embankment on the ground and 365days later were compared and analyzed. As the results, the effect regarding partially penetrated SCP was similar to the effect regarding fully penetrated SCP under the bottom of the center of embankment when considering the safety towards shear failure.