• Title/Summary/Keyword: Sand Foundation

Search Result 261, Processing Time 0.02 seconds

Characteristics and Provenance of Heavy Minerals in the Yellow Sea and Northern East China Sea (황해 및 동중국해 북부의 중광물 특성과 기원)

  • Koo, Hyo Jin;Lee, Bu Yeong;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.505-515
    • /
    • 2020
  • The Yellow Sea and northern East China Sea contain a transgressive sand layer. Numerous sedimentary studies have been carried out in these sand deposits using seismic exploration and core sediment techniques, but few mineralogical studies have been reported. The major purposes of this study are to describe the distributions of heavy minerals throughout the Yellow sea and northern East China Sea and to identify the provenance of coarse sediments using the mineral chemistry. Eight heavy mineral species were identified in the study area (epidote, amphibole, garnet, zircon, sphene, rutile, apatite, and monazite). The study region was divided into six areas (areas A to F) based on heavy mineral distributions and sampling locations. In mineral chemistry, the amphiboles present are classified as edenite and hornblende in the calcic amphibole group, and the garnets are identified primarily as almandine in the pyralspite group. A combined data set of heavy mineral distributions and mineral chemistry showed clear differentiation of the characteristics of the six classified areas, enabling determination of provenance and sedimentary environment. Area A and B in the eastern Yellow Sea were originated from the Korean peninsula, and these regions showed different heavy mineral characteristics by tidal current and coastal current. In addition, monazite was only found in the area B and could be used as an indicator from the southwestern Korean peninsula. Area D and E in the western Yellow Sea showed the characteristics of sediments originating from the Huanghe, and sediment in the area E was derived from the Changjiang. Area C in the northern East China Sea appeared to have Changjiang-origin sediment, and abundant apatite indicated that area C was formed close to the Last Glacial Maximum.

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.

Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반의 상대밀도에 따른 횡방향 반복재하 시 말뚝의 극한지지력 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.41-49
    • /
    • 2016
  • Pile foundations used as offshore support structures are dominantly subjected to cyclic lateral loads due to wind and waves. In this study, a series of cyclic lateral load tests were performed on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the effect of cyclic lateral loads on lateral load capacity of a pile. The cyclic lateral loads increased the lateral load capacity of a pile at 40% relative density, whereas they decreased it at 70% and 90% relative densities. This can be explained by the fact that the cyclic lateral loads slightly densified the surrounding soil in relatively loose sand (40%), while the surrounding soil was disturbed in relatively dense sand (70% and 90%). These effects were more obvious as the cyclic lateral load amplitude increased, being independent with the saturation. Also, from the test results, an empirical equation for the lateral load capacity of a cyclic laterally loaded pile in sandy soil was developed in terms of relative density of the soil and the cyclic lateral load amplitude.

Compressive Behavior of Micropile According to Pile Spacing and Embedded Pile Angle in Sand (사질토 지반에 설치된 마이크로파일의 설치간격 및 설치각도에 따른 압축거동특성)

  • Kyung, Doo-Hyun;Kim, Ga-Ram;Kim, Dae-Hong;Shin, Ju-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.57-67
    • /
    • 2013
  • Micropile technology has evolved continuously since its instruction by Fernando Lizzi in the 1950s. The effects of group micropile have been researched by many researchers. The effects of group micropile differ and change with pile length, pile spacing (S), pile angle (${\theta}$) and pile embedded conditions. In the present study, the effects of resistance increase and settlement reduction from micropiles were investigated through a series of axial load tests. For the study, axial load tests were performed using mat, group micropiles and micropiled-raft (MPR) in various pile spacing and pile angle conditions. As the result, the effects of resistance of micropiled-raft were 80% (3D) to 110% (7D) of the total resistance of mat and group micropile. The effects of settlement restraint of micropiled-raft were 20% (S=3D, ${\theta}=45^{\circ}$) to 70% (7D, ${\theta}=15^{\circ}$) of settlement of mat foundation.

Pore flow Characteristics in Seabed around Dike Due to Variation of Ground Water Level (지하수위 변화에 따른 호안 주변 지반내의 흐름특성)

  • Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.408-417
    • /
    • 2007
  • Recently, an artificial beach has been constructed compensating for loss of the natural one caused by the development of coastal area, as well as serving as a location for recreational activities such as sea bathing. It is well known that some structure should be constructed to protect an artificial beach from the outflow due to wave action of the reclaimed sand. In general, dike is utilized as the structure to protect an artificial beach. And, one of the factors which may need to be taken into consideration for stability of dike on seabed foundation is the ground water behavior behind dike. However, the interrelated phenomena of nonlinear wave and ground water response have relatively little attention although these interactions are important for stability of structure and sand suction to the artificial beach. In this paper, the numerical wave tank was developed to clarify nonlinear wave, dike and ground water dynamic interaction, which can simulate the difference of ground water and mean water level. Using the developed numerical wave tank, the present study investigates how variation of ground water level influences hydrodynamic characteristics in seabed around dike and numerically simulates the wave fields, pore flow patterns, pore water pressures and vorticities according to variation of ground water level. Numerical results explain well how hydrodynamic characteristics in seabed around dike is affected by the variation of ground water level.

Shear Strength Characteristics of Geo - Soluble - Materials (용해재료가 포함된 지반의 전단강도 특성)

  • Tran, M. Khoa;Park, Jung-Hee;Byun, Yong-Hoon;Shin, Ho-Sung;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.17-25
    • /
    • 2011
  • A fabric of soil media may change due to certain factors such as dissolution of soluble particles, desiccation, and cementation. The fabric changes affect the mechanical behavior of soils. The purpose of this study is to investigate the effects of geo-material dissolution on shear strength. Experiments and numerical simulations are carried out by using a conventional direct shear and the discrete element method. The dissolution specimens are prepared with different volumetric salt fraction in sand soils. The dissolution of the specimens is implemented by saturating the salt-sand mixtures at different confining stresses in the experimental study or reducing the sizes of soluble particles in the numerical simulations. Experimental results show that the angle of shearing resistance decreases with the increase in the soluble particle content and the shearing behavior changes from dilative to contractive behavior. The numerical simulations exhibit that macro-behavior matches well with the experimental results. From the microscopic point of view, the particle dissolution produces a new fabric with the increase of local void, the reduction of contact number, the increase of shear contact forces, and the anisotropy of contact force chains compared with the initial fabric. The shearing behavior of the mixture after the particle dissolution is attributed to the above micro-behavior changes. This study demonstrates that the reduction of shearing resistance of geo-material dissolution should be considered during the design and construction of the foundation and earth-structures.

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.59-72
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Modelling and Analysis of Roll-Type Steel Mats for Rapid Stabilization of Permafrost (I) - Modeling - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(I) - 해석모델의 수립 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon;Zi, Goangseuo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.97-107
    • /
    • 2014
  • Finite element modelling and analysis were conducted for the roll-type steel mats which were placed on loose sand and subjected to a standard truck wheel load in this study. The roll-type steel mats mean that the steel mats can be folded as a circle shape for the carrying to fields in cold regions where workability is limited and are developed for a rapid rehabilitation method for roadway across soft ground which is caused by thawing during the summer season in cold regions. The model is composed of link elements to simulate nonlinear behavior of connections between steel mats, thick shell elements to have flexural stiffness of the steel mats, and springs to simulate characteristics of foundation soils. The structural behaviors of the shell, link elements, and springs were verified at each modelling step through experiment and analysis. Beam and shell analysis without the link elements were conducted and compared to results obtained from the model presented in this study. Significant vertical displacement is shown in the shell model with hinge connections. Therefore, the results demonstrate that the analysis model for the roll-type steel mats on loose sand needs further detail parametric studies.