• Title/Summary/Keyword: Sand Core

Search Result 106, Processing Time 0.024 seconds

Comparison Between Conservation System of a Coastal Type of National Park of Korea and Japan - Focused on Taean-Haean National Park - (해안형 국립공원의 보전체계에 대한 한.일 비교 - 태안해안 국립공원을 중심으로 -)

  • Jo, Tae-Dong;Okano, Takahiro
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.151-155
    • /
    • 2003
  • The resources conservation system is comprehended, making Taean-haean National Park a research material by applying the fact of landowning, designating an LOP and Korea and Japan's Natural Park Act. Following conclusions were obtained in this study; Most of land areas of the National Park are privately owned; Only a few have been designated as Natural Reservation, a core reserved area on LOP, and a sandy beach, a sand dune, a sand spit, a tidal flat, a wetland, etc are distributed in the natural environment area so they were exposed to development; As seen in most of coastal type of National Parks, 13 commercial beaches are established. The annual rush to the beaches appears in July and August; Sand dune areas that have to be managed in terms of conservation, are turned into beaches. Moreover, the collective facilities areas are randomly developed. So they fail to function originally; The current Natural Park Act has no systematic devices for conservation of the natural resources on the seashore or offshore.

A Study on the Strength Prediction of Crushed Sand Concrete by Ultra-sonic Velocity Method (초음파속도법에 의한 부순모래 콘크리트의 강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Youm, Chi-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2007
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site. In this study, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameter were concrete age, curing condition, and strength level.

Scoping Analysis of MCCI (Molten Core Concrete Interaction) at Plant Scale Using CORQUENCH Code (CORQUENCH 코드를 사용한 실규모 원자로의 노심용융물과 콘크리트 상호반응 해석)

  • Kim, Hwan-Yeol;Park, Jong-Hwa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.268-271
    • /
    • 2008
  • If a reactor vessel is failed to retain a molten corium in a postulated severe accident, the molten corium is released outside the reactor vessel into a reactor cavity. The molten corium would attack the concrete wall and basemat of the reactor cavity, which may lead to inevitable concrete decompositions and possible radiological releases. In the OECD/MCCI project, a series of tests were performed to secure the data for cooling the molten corium spread out at the reactor cavity and for the long-term CCI (Core Concrete Interaction). Also, a MCCI (Molten Core Concrete Interaction) analysis code, CORQUENCH was upgraded at Argonne National Laboratory with embedding the new models developed for the tests. This paper deals with analyses of MCCI at plant scale under the conditions of top flooding using the upgraded CORQUENCH code. The modeling approach is briefly summarized first, followed by presentation of a validation calculation that illustrates the predicative capability of the modeling tool. With this background in place, the model is then used to carry out a parametric set of scoping calculations that define approximate coolability envelopes for the LCS (Limestone Common Sand) concrete that has been evaluated in the OECD/MCCI project.

  • PDF

Seismic Stratigraphy and Sedimentary Environment of the Dukjuk-Do Sand Ridge in Western Gyeonggi Bay, Korea (경기만 서부 덕적도 사퇴의 탄성파층서 및 퇴적환경 연구)

  • Lee, Yoon-Oh;Choi, Sang-Il;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.9-21
    • /
    • 2014
  • We examined high-resolution seismic data, side scan sonar data, surface sediments, and vibrocore samples from a sand ridge off the western part of Dukjuk-Do in Gyeonggi Bay, with the aim of interpretation of seismic stratigraphy and sedimentary environment. Based on the seismic data, the deposited sands are divided into three sedimentary units. 14C age data indicate that the top sequence (sequence I) formed at 5000-6000 yr BP, when a transgression resulted in strong shifting tides. Analyses of the vibrocore samples indicate that sequence II is a paleo-mudflat layer of intertidal sediments dominated by mud. Sequence III consists of terrestrial sediments that are presumed to have been deposited at the end of the Pleistocene, unconformably overlying the acoustic bedrock and Mesozoic granite. The side scan sonar data indicate that sand waves were formed on the seabed on top of the sand ridge. Generally, this is the direction of $N20^{\circ}E$, which coincides with the direction of tidal flow. Sand ripples occur away from the top of the sand ridge and are distributed homogeneously across a sandy slope. Vibrocore analyses indicate that the surface sediments and core sediments (samples VC-1, -2, and -3) are homogeneous, without any internal structures, and are characterized by a mixture of medium and fine sand (1-$2{\phi}$), respectively.

Study on CO2-Coal Gasification Reaction Using Natural Mineral Catalysts (천연 광물질을 이용한 CO2 석탄 촉매 가스화 반응 특성 연구)

  • Lee, Roosse;Sohn, Jung Min
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.56-61
    • /
    • 2016
  • In this study, the effect of natural minerals on the reaction kinetics for lignite-$CO_2$ gasification was investigated. After physical mixing of lignite from Meng Tai area with 5 wt% of each natural mineral catalysts among Dolomite, Silica sand, Olivine and Kaolin, $CO_2$ gasification was performed using TGA at each 800, $850^{\circ}C$ and $900^{\circ}C$. The experimental data was analyzed with volumetric reaction model (VRM), shrinking core model (SCM) and modified volumetric reaction model (MVRM). MVRM was the most suitable among three models. As increasing the reaction temperature, the reaction rate constant became higher. With natural mineral catalysts, the reaction rate constant was higher and activation energy was lower than that of without catalysts. The lowest activation energy, 114.90 kJ/mol was obtained with silica sand. The highest reaction rate constant at $850^{\circ}C$ and $900^{\circ}C$ and lower reaction rate constant at $800^{\circ}C$ were obtained with Kaolin. Conclusively, the better catalytic performance could be observed with Kaolin than that of using other catalysts when the reaction temperature increased.

Mock-up Test for Development of High Quality Concrete Using Crushed Sand in Construction Field (부순모래를 사용한 콘크리트의 고품질화 기술개발을 위한 현장 Mock-up 실험)

  • Yoo Seung-Yeup;Kim Ki-Hoon;Sohn Yu-Shin;Lee Seung-Hoon;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.17-20
    • /
    • 2005
  • This study investigates mock-up test of the concrete containing crushed sands with improved quality and following could be draws as conclusions. The slump satisfies the target value. The air content reaches the goal, however, it decreases by the occurrence of loss with elagse of age. In normal strength region, the setting time of CS24 member is shorter than that of SS24 member. In high strength region, the setting time of SS50 member is make only slower than that of CS5O because of the use of retarding AE agent. The compressive strength of the concrete using crushed sands is little higher than the concrete using washed sea sands, and the compressive strength of core sample increases at lower part. Drying shrinkage of the concrete using crushed sands is larger than that using washed sea sands. At water caring condition, both the concrete using crushed sands and using washed sands expand at first, exhibit to be swelled and with elagse of age, they remain relatirely constant. Also, the drying shrinkage occurred greatly when the width and thickness of a member are small because it is easy to evaporate the inner part vapor in the small width and thickness of a member. there can be little different according to the location of a contact gauge, however it is similar to the change of specimen's length change. The concrete using crushed sands, of which grading, grain shape and fine particle is improved, are comparable to the quality of the concrete using washed sea sand.

  • PDF

Floor Panel manufacturing using Capital bamboo(Phyllostachys bambusoides) grown in Damyang Region -Part 1. Flattening of bamboo stem and floor making technology- (담양산 왕대나무를 이용한 평판 바닥재 제조기술 개발 -제1보. 대나무 원통의 평판화 및 마루판 제작 기술 표준화-)

  • Park, Choong-Nyeon;Chung, Woo-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.5
    • /
    • pp.480-489
    • /
    • 2009
  • This study was carried out to develop the core technology for the manufacturing the flat floor panel with the bamboo grown in Damyang region maintaining its indigenous merits. Using capital bamboo(Phyllostachys bambusoides) of Damyang with superior physical and working properties, Authors have standardized the core technologies for the integrated production of flat floor panel using this superior bamboo i.e, washing, splitting, flattening, blasting, and overlaying over plywood. It is expected to increase the income from bamboo forest and to enhance the image of the eco-city, Damyang with this technological development. Additional quality assuring test and economical analysis for the industralization as building material will be performed.

  • PDF

Development of Ternary Inorganic Binder System for Manufacturing High-Functional Ceramic Molds and Core (고기능성 세라믹 주형 및 중자 제작을 위한 3원계 무기 바인더 시스템 개발)

  • Hye-Yeong Park;Geun-Ho Cho;Hyun-Hee Choi;Bong Gu Kim;Eun-Hee Kim;SeungCheol Yang;Yeon-Gil Jung
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.538-544
    • /
    • 2022
  • In existing ceramic mold manufacturing processes, inorganic binder systems (Si-Na, two-component system) are applied to ensure the effective firing strength of the ceramic mold and core. These inorganic binder systems makes it possible to manufacture a ceramic mold and core with high dimensional stability and effective strength. However, as in general sand casting processes, when molten metal is injected at room temperature, there is a limit to the production of thin or complex castings due to reduced fluidity caused by the rapid cooling of the molten metal. In addition, because sodium silicate generated through the vitrification reaction of the inorganic binder is converted into a liquid phase at a temperature of 1,000 ℃. or higher, it is somewhat difficult to manufacture parts through high-temperature casting. Therefore, in this study, a high-strength ceramic mold and core test piece with effective strength at high temperature was produced by applying a Si-Na-Ti three-component inorganic binder. The starting particles were coated with binary and ternary inorganic binders and mixed with an organic binder to prepare a molded body, and then heat-treated at 1,000/1,350/1,500 ℃ to prepare a fired body. In the sample where the two-component inorganic binder was applied, the glass was liquefied at a temperature of 1,000 ℃ or higher, and the strength decreased. However, the firing strength of the ceramic mold sample containing the three-component inorganic binder was improved, and it was confirmed that it was possible to manufacture a ceramic mold and core via high temperature casting.

A Study on the Mechanical Compaction of Fill Dam (Fill Dam의 기계 전압효과에 관한 연구)

  • 윤충섭;김주범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-103
    • /
    • 1979
  • The compaction of core zone of the fill dam is very important foe increasing of the Strength of soil mass and reduction of permeability of the core. The principal objects of this study are to give the construction criteria of tamping rollers and to find out the relationships between density and permeability of soil after compaction. The results in this study are summarized as follows. 1. The core zone of fill dam should be compacted more than 8 passed because the compaction effects of clayey soil increase sharply in about 8 passes of roller. 2. The coefficient of permeability (K) increases with the thickness of compaction of soil even though the density is same. 3. The effect of compaction increases with the quantity of coarse materials such as coarse sand and gravel. 4. If D values change from 100 percent to 98 percent and from 100 percent to 95 percent, K values become 2 times and 5 times of initial K value respectively. 5. The coefficient of permeability in the field soil is very high comparing with the result of laboratory test at the same 100 percent compaction ratio, but differences between both results decrease with the decrease of compaction ratio. 6. Thickness of soil layer for the compaction should be increased for heavier compaction machine. 7. In order to get the compaction ratio of 98 percent or more, 10 to 12 passes of roller is generally required with the thickness of soil from 20cm to 30cm.

  • PDF