• Title/Summary/Keyword: Salt-Wedge profile

Search Result 4, Processing Time 0.022 seconds

Experimental Study to Parameterize Salt-Wedge Formations in Coastal Aquifer (해안대수층에서 담수-염수 경계면 형성에 영향을 미치는 조건에 대한 실험적 연구)

  • Park, Hwa-Jun;Kim, Won-Il;Ho, Jung-Seok;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.1005-1015
    • /
    • 2009
  • Saltwater intrusion in coastal aquifer was investigated using a laboratory model. Salt-wedge profiles were reproduced in a porous media tank 140 cm long, 70 cm high, and 10 cm wide. The experiments were performed with various conditions of porous media hydraulic conductivity, salinity, and ground surface slope to assess relationships on salt wedge location and inclination. Salt-wedge profiles induced by saltwater intrusion were observed in porous media equilibrium state, and compared with previously derived formulas of the Glover (1959), Henry (1959) and Strack (1976). It was found that salt-wedge shape and formations were affected by the water level ratio ($H_F/H_S$) due to high hydraulic conductivity, saltwater salinity and ground surface slope. High $H_F/H_S$ of porous media having high hydraulic conductivity shifted the saltwater interface toward the saltwater reservoir. Increasing surface slope of the porous media caused the salt-wedge profile inclination to decrease. Saltwater salinity also contributed to the location of saltwater interface, yet the impact was not more significant than hydraulic conductivity.

The Physical Characteristics of the flow field and the Form of Arrested Salt Wedge (정상 염수쇄기의 형상과 흐름 장의 물리적 특성)

  • 이문옥
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.62-73
    • /
    • 1990
  • An experimental study is performed in order to catch the characteristics of the flow field at arrested salt wedge, using a rectangular open channel. Arrested salt wedge is generally so stable that the observations are easy, but velocities and interfacial waves are measured with the aid of visualization method, by injection of fluorescent dyes. The density interface, which is defined as the zone of maximum density variation with depth, exists in about 0.5 cm below the visual interface, and vertical density profile is quite well satisfied with Homeborn model. Interfacial layer has high turbulent intensity and its thickness decreases as the overall Richardson number increases and has magnitude of roughly 17% of upper layer. Cross-sectional velocity distribution just shows the influence of a side-wall friction and in the upper layer vertical velocity profile also becomes uniformly as Reynolds number increases, but in the lower layer it shows nearly parabolic type. Supposes that we divide salt wedge into three domains, that is, river mouth, intermediate and tip zone, entertainment coefficient is small at the intermediate zone and large at the river mouth and the tip zone. River mouth or intermediate zone has comparatively stable interface and capillary wave therefore s produced and propagated downstream. On the other hand, tip zone is very unstable, cusping ripple or bursting ripple is then produced incessantly. Arrested salt wedge form is nearly linear and has no relation to densimetric Froude number and Reynolds number.

  • PDF

Mixing Process of Double Diffusive Salt Wedge (이중확산의 영향을 받는 염수침입의 혼합과정 연구)

  • Hwang, Jin-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • Salt wedge into the river from the sea or fresh water flume (fresh wedge) in the ocean from the sea has density current characteristics. However, when temperature and salinity simultaneously determine the density of wedges, one of salinity and temperature can distributed in the reversed profiles against gravity, even though the density profile is stable. In this case, the double diffusive process is critical in determining mixing rate. The present work studies relative contribution of shear driven mechanical mixing component and double diffusive layering process, when warm salty denser water is introduced into the cold fresh lighter water column. Laboratory experiment releases warm salty denser water into cold fresh lighter water controlling discharge amount to achieve the steady state of density current. When longitudinal density rate becomes 15, the released amount ratio of salt and heat changes sharply and in the releasing point, vigorous mixing occurs with increase of discharged amount due to double diffusion. Double diffusion distabilizes gravitational stability and enhances the mixing rate up to $6{\times}10$ times at the lower density ratio comparing to the higher density ratio.

  • PDF

Experimental Study of Freshwater Discharge and Saltwater Intrusion Control in Coastal Aquifer (해안대수층에서 담수-염수 경계면 변화에 따른 최대담수양수량과 염수침투제어에 대한 실험적 연구)

  • Suh, Seong-Kook;Oh, Chang-Moo;Kim, Won-Il;Ho, Jung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.159-168
    • /
    • 2010
  • This study investigates the relationships between the maximum freshwater pumping discharge and hydraulic properties of coastal aquifer using a laboratory model. The experiment performed the fresh pumping test in various locations near the saltwedge induced by saltwater intrusion to freshwater over aquifer characteristics of hydraulic conductivity, salinity, and ground surface slope. Saltwater pumping also tested to protest saltwater intrusion to the excessively discharging freshwater well. The maximum freshwater discharges were achieved, and then the optimum saltwater discharges were measured. It is found that greater hydraulic conductivity and ground surface slope produced greater the maximum freshwater pumping discharge. Salinity gave less impact on the pumping discharge relatively. Higher freshwater discharge was found at higher hydraulic conductivity and steeper ground surface slope. The optimum saltwater discharge required 14% more pumping rate than the maximum freshwater discharge to keep saltwater intrusion to the freshwater pumping well. Pumping well located closer to salt-wedge profile promoted less freshwater pumping discharge. Therefore, pumping well location, hydraulic conductivity, ground surface slope, and salinity should be taken into account in freshwater pumping in coastal aquifer.