• Title/Summary/Keyword: Salt waste

Search Result 329, Processing Time 0.025 seconds

Growth Properties of Mixtures with Mixed Organic Fertilizer and Dried Food Waste Powder in Pakchoi (Brassica rapa L.) (음식물류폐기물건조분말과 혼합유기질비료 혼합물의 청경채 생장 효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Hoonsoo;Lee, Geung-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.17-25
    • /
    • 2021
  • This study was conducted to investigate effects of mixture with dried food waste powder (FWP) and mixed organic fertilizer (MOF) on growth of pakchoi. As compared with non-fertilizer treatment (NF) or control (MOF treatment), growth of pakchoi in FWP treatments (2,500 kg/ha, 5,000 kg/ha, 10,000 kg/ha) was inhibited by salt (NaCl) content in the FWP. In comparison with control, mixtures of MOF and FWP (FWP10, FWP20, and FWP30 treatment) were not significantly different, and their salt content correlated with pakchoi growth factors negatively (P<0.05). Applied of FWP10, (FWP10: 2,500 kg/ha, 2FWP10: 5,000 kg/ha, 3FWP10: 7,500 kg/ha, 4FWP10: 10,000 kg/ha), growth factors of FWP10, 2FWP10 and 3FWP10 treatment were not significantly different than those of chemical fertilizer treatment, and of 4FWP10 decreased. Correlation coefficient between NaCl supply by FWP10 application and growth factor was negative (P<0.01). These results indicated that FWP was used as another source of organic fertilizer, and the organic fertilizers blending with FWP inhibited a pakchoi growth by increase of salt content containing in the them or of salt supplying amount after their application.

Operating Characteristics of Composting Facility during Composting of Food Waste and Co-composting of Food Waste and Sewage Sludge (음식물쓰레기 단독 퇴비화 및 음식물쓰레기와 하수 슬러지의 혼합 퇴비화에 따른 퇴비화시설의 운전특성)

  • 남궁완;이노섭;박준석;인병훈;허준무;박종안
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.86-92
    • /
    • 2002
  • This study was performed to assets the operating characteristics of food waste composting and co-composting (food waste + sewage sludge) at a compelling facility. The facility was being operated successfully without being affected by kind of composting feed materials. Partial anaerobic condition was detected during food waste composting and co-com-posting, but these two composting systems were proven to be operated successfully under aerobic condition from the monitoring results of $O_2$, volatile solids reduction rate, temperature, and other parameters. The conductivity and chloride concentrations of compost were gradually increased during two composting periods, but the conductivity and chloride concentrations of co-compelling indicated lower values than those of food waste composting at final point(40 m). As a result, co-composting was turned out to be more desirable than food waste composting, considering salt problem. High correlations ($R^2$= 0.9265 for food waste composting and $R^2$= 0.9685 for co-composting) between CEC and volatile organic matter were found. Quality of composts produced from two composting process satisfied Korean heavy metal standard.

Analysis of AM and AEM Oxides Behavior in a SF Electrolytic Reduction Process (사용후핵연료 전기환원 공정에서의 알카리, 알카리토 금속 산화물들의 거동 분석)

  • 박병흥;강대승;서중석;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.268-277
    • /
    • 2004
  • process (ACP), electrochemical properties of high heat-generating alkali and alkali earth oxides in molten salt were measured and the behavior of those elements were analyzed. The reduction potentials of Cs, Sr, and Ba in a molten LiCl-$Li_2O$ system were more cathodic than that of Li and closely located one another. Thus, it is expected that the alkali and alkali earth would not hinder the reaction mechanism which is via lithium reduction. Alkali and alkali earth metals are likely to recycle into molten salt when the process is operated beyond metal reduction potentials and the effect of electric current on the mass transport is also determined by measuring the metal concentrations in the molten salt phase at different current conditions.

  • PDF

Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis (다상유동 전산모사를 통한 공학 규모의 cathode processor의 성능평가)

  • Yoo, Bung Uk;Park, Sung Bin;Kwon, Sang Woon;Kim, Jeong Guck;Lee, Han Soo;Kim, In Tae;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.7-17
    • /
    • 2014
  • Molten salt electrorefining process achieves uranium deposits at cathode using an electrochemical processing of spent nuclear fuel. In order to recover pure uranium from cathode deposit containing about 30wt% salt, the adhered salt should be removed by cathode process (CP). The CP has been regarded as one of the bottle-neck of the pyroprocess as the large amount of uranium is treated in this step and the operation parameters are crucial to determine the final purity of the product. Currently, related research activities are mainly based on experiments consequently it is hard to observe processing variables such as temperature, pressure and salt gas behavior during the operation of the cathode process. Hence, in this study operation procedure of cathode process is numerically described by using appropriate mathematical model. The key parameters of this research are the amount of evaporation at the distillation part, diffusion coefficient of gas phase salt in cathode processor and phase change rate at condensation part. Each of these conditions were composed by Hertz-Langmuir equation, Chapman-Enskog theory, and interphase mass flow application in ANSYS-CFX. And physical properties of salt were taken from the data base in HSC Chemistry. In this study, calculation results on the salt gas behavior and optimal operating condition are discussed. The numerical analysis results could be used to closely understand the physical phenomenon during CP and for further scale up to commercial level.

MVRS해수담수화 및 제염기술

  • 김상현;김동국;전원표
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2001.05a
    • /
    • pp.285-302
    • /
    • 2001
  • At the present time the desalination technology of sea water for portable water in islands employs the RO method. The technology which needs complicated pretreatment processes with various chemicals can generate secondary water pollution and the high maintenance costs such as replacements of filters and membranes make islanders nearly impossible to operate. The MVRS technology for desalination of sea water however has several advantages such as constant production of quality portable water and capability of managing broad operating load. The variable-speed turbo-type vapor compressors employed in the system can utilize wind energy which is abundant in most Korean islands. Salt as a by-product can be produced by applying solar energy to the salt-concentrated waste water from the system. This paper discusses the relating topics such as technical and economical viabilities of the new MVRS desalination system for the production of portable water and salt as a by-product using new & renewable sources of energy.

  • PDF

Preparation of Instant Powdered Soup using Canned Oyster Processing Waste Water and Its Characteristics (굴통조림 부산액을 이용한 인스턴트 분말수프의 제조 및 특성)

  • KIM Jin-Soo;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2001
  • To utilize canned oyster processing waste water effectively, this study was carried out to prepare instant powdered soup using the waste water (IPSW), Instant powdered souu from oyster hot-water extracts (IPSE) was prepared by mixing hot-water extracts powder (15 g) with table salt (5 g), cream powder (19 g), milk replacer (12 g), wheat flour (20 g), corn flour (15 g), starch (5 g), glucose (7.5 g) and onion powder (1.5 g). In preparing IPSW, mixed powder from wash water and boiling liquid waste, instead of powder from hot-water extracts and table salt, was added (powder from boiling liquid waste: powder from wash water= 12: 8) and other additives were added in proportion to those in the IPSE, The IPSW consists mainly of carbohydrates (about $72\%$). It was not different from the IPSE. The volatile basic nitrogen, viable cell counts, coliform group of the IPSW contains 33.4 mg/100g, $2.2\times10^4CFU/g$, <180 MPN/100g, respectively, and its water activity has 0.257. So it was a hygienically safe and conservable instant food. The main fatty acids of IPSW were 16: 0 and 18: 1n-9. Its chemical score of protein was $61.4\%$ and its main inorganic matter was iron. According to a sensual evaluation, in contrast to the IPSE, the IPSW had a bit lower aroma but better taste, It was concluded from the above chemical and sensory evaluation that even the boiling liquid waste which had been mostly abandoned because of its high table salt content can be used as a good material for instant powdered soup if it's powdered and mixed adequately with powder from wash water, and its table salt content is properly adjusted.

  • PDF

Effects of microplastics and salinity on food waste processing by black soldier fly (Hermetia illucens) larvae

  • Cho, Sam;Kim, Chul-Hwan;Kim, Min-Ji;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Background: The black soldier fly (Hermetia illucens) is gaining attention as an efficient decomposer of food waste. However, recalcitrant compounds such as plastics mixed into food waste may have negative effects on its growth and survival. Moreover, its efficiency of food waste degradation may also be affected by plastics. In addition, salt (NaCl) can also be present in high concentrations, which also reduces the efficiency of H. illucens-mediated food waste treatment. In this study, we assessed the growth of black soldier fly larvae (BSFL) reared on food waste containing polyethylene (PE) and polystyrene (PS) and NaCl. The weight of BSFL was measured every 2-4 days. Survival and substrate reduction rates and pupation ratio were determined at the end of the experiment. Results: The total larval weight of Hermetia illucens reared on food waste containing PS was greater than that of the control on days 20 and 24. However, the survival rate was lower in the group treated with 5% PS, as was substrate reduction in all PS-treated groups. The weight of BSFL reared on food waste containing PE was lower than that of the control on day 6. PE in food waste did not affect the survival rate, but the pupation ratio increased and substrate consumption decreased with increasing PE concentrations. Regardless of the plastic type, the addition of NaCl resulted in decreased larval weight and pupation ratio. Conclusions: Larval growth of black soldier fly was inhibited not by plastics but by substrate salinity. Additional safety assessments of larvae reared on food waste containing impurities are needed to enable wider application of BSFL in vermicomposting.

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.