• Title/Summary/Keyword: Salt form

Search Result 348, Processing Time 0.024 seconds

Effects of Mineral Supplementation on Milk Yield of Free-ranging Camels (Camelus dromedarius) in Northern Kenya

  • Onjoro, P.A.;Njoka-Njiru, E.N.;Ottaro, J.M.;Simon, A.;Schwartz, H.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1597-1602
    • /
    • 2006
  • The effects of different mineral supplementations on the milk yield of free-ranging Somali camels were investigated in two phases in a semi-arid region of northern Kenya during the dry and wet seasons in 2002 and 2003. In phase 1, twelve (12) lactating camels were selected at random to form four (4) groups each consisting of three camels. The first group served as the control and as a result received no mineral supplementation. In addition to the control diet the other groups received oral doses of minerals as follows over a 60-day period: T1 (P), T2 (High Cu low Co) and T3 (Low Cu high Co). The daily milk yield and blood mineral profiles were measured during the wet and dry seasons. The mean daily milk yield increased from 3.4 L/d to $4.3{\pm}0.3L/d$ and 5.2 L/d in the dry and wet seasons, respectively. Fifteen (15) lactating camels were selected at random to form five groups each consisting of three replicates. The control group did not receive any mineral supplement. The other four groups in addition to the control diet, received the following treatments: T4 (Common Salt), T5 (High Co), T6 (High Co+P) and T7 (Low Co+P). Mineral supplement T6 produced significantly higher milk yield ($5.4{\pm}0.5$ and $6.5{\pm}0.7L/d$) during the dry and wet seasons. Both T6 and T7 had significantly higher milk yield than T4 and T5. During both phases, the blood Ca and P level significantly increased in camels receiving T1, 6 and 7. Animals that received only the trace mineral supplements had lower blood P compared to the ones receiving supplementary P and also the control. Supplementation of lactating camels with Co and P significantly (p<0.05) increased milk yield). Effect of common salt, commonly given by farmers, on milk yield was insignificant. It was concluded that mineral supplementation to lactating camels was beneficial, and that mineral supplements should include P and Co. Further research is required to establish P and Co requirements of lactating camels.

Recovery Process of Vanadium from the Leaching Solution of Salt-Roasted Vanadate Ore (바나듐광 염배소물 수침출 용액으로부터 바나듐 회수공정 고찰)

  • Yoon, Ho-Sung;Heo, Seo-Jin;Park, Yu-Jin;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Rina;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.40-48
    • /
    • 2022
  • In this study, the effects of solution components were investigated in the recovery of vanadium as ammonium metavanadate from vanadium-ore-salt roasting-water leaching solution. The vanadium-containing solution is strongly alkaline (pH 13), so the pH must be lowered to 9 or less to increase the ammonium metavanadate precipitation efficiency. However, in the process of adjusting the solution pH using sulfuric acid, aluminum ions are co-precipitated, which must be removed first. In this study, aluminum was precipitated in the form of an aluminum-silicate compound using sodium silicate, and the conditions for minimizing vanadium loss in this process were investigated. After aluminum removal, the silicate was precipitated and removed by adjusting the solution pH to 9 or less using sulfuric acid. In this process, the concentration and addition rate of sulfuric acid have a significant influence on the loss of vanadium, and vanadium loss was minimized as much as possible by slowly adding dilute sulfuric acid. Ammonium metavanadate was precipitated using three equivalents of ammonium chloride at room temperature from the aluminum-free, aqueous solution of vanadium following the pH adjustment process. The recovery yield of vanadium in the form of ammonium metavanadate exceeded 81%. After washing the product, vanadium pentoxide with 98.6% purity was obtained following heat treatment at 550 ℃ for 2 hours.

Dissolution and Duodenal Permeation Characteristics of Lovastatin from Bile Salt Solid Dispersions (담즙산염과의 고체분산체로부터 로바스타틴의 용출 및 십이지장 점막 투과 특성)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Although lovastatin (LS) is widely used in the treatment of hypercholesterolemia, its bioavailability is known to be around 5%. This study was aimed to increase the solubility and dissolution-permeation rates of LS using solid dispersions (SDs) with bile salts. The solubilities of LS in water, aqueous bile salt solutions and non-aqueous vehicles were determined, and effects of bile salts on the cellulose or duodenal permeation of LS from SDs were evaluated using a horizontal permeation system. SDs were prepared at various ratios of LS to carriers, such as sodium deoxycholate (SDC), sodium glycocholate (SGC) and/or 2-hydroxypropyl-$\beta$-cyclodextrin (HPCD). The addition of bile salts (25 mM) in water increased markedly the solubility of LS by the micellar solubilization. Some non-aqueous vehicles were effective in solubilizing LS. From differential scanning calorimetric studies, it was found that the crystallinity of LS in SDs disappeared, indicating a formation of amorphous state. The SDs showed markedly enhanced dissolution compared with those of their physical mixtures (PMs) and drug alone. In the dissolution-permeation studies using a cellulose membrane, the donor and receptor solutions were maintained as a sink condition using pH 7.0 phosphate buffer containing 0.05% sodium lauryl sulfate (SLS). The flux of LS alone was nearly same as that of LS-SDC-HPCD (1:3:6) PM. However, the flux of LS-SDC-HPCD (1:3:6) SD slightly increased compared with drug alone and PM, suggesting that entrapment of LS in micelles does not significantly hinder the permeation across cellulose membrane. In the dissolution-duodenal permeation studies using a LS-HPCD-SDC (1:3:6) SD, the addition of various bile salts in donor solutions (25 mM) enhanced the permeation of LS markedly, and the fluxes were found to be $0.69{\pm}0.41$, $0.87{\pm}0.51$, $0.84{\pm}0.46$, $0.47{\pm}0.17$ and $0.68{\pm}0.32{\mu}g/cm^2/hr$ for sodium cholate (SC), SDC, SGC, sodium taurodeoxycholate (STDC) and sodium taurocholate (STC), respectively. The stepwise increase of donor SGC concentration increased the flux dose-dependently. From the relationship of donor SGC concentration and flux, the concentration of SGC initiating the permeation across the duodenal mucosa was calculated to be 11.1 mM, which is nearly same as the critical micelle concentration (CMC, 11.6 mM) of SGC. However, with no addition of bile salts and below CMC, the permeation was very limited and irratic, indicating that LS itself is very poor permeable. Higher protions of bile salt in SD such as LS-SDC or LS-SGC (1 : 49 and 1 : 69) showed highly promoted fluxes. In conclusion, SD systems with bile salts, which may form their micelles in intestinal fluids, might be a promising means for providing enhanced dissolution and intestinal permeation of practically insoluble and non-absorbable LS.

Effect of Metal Salt Coagulant on Membrane Fouling During Coagulation-UF Membrane Process (응집-UF 막 공정의 적용시 금속염 응집제가 막오염에 미치는 영향)

  • Jung, Chul-Woo;Shim, Hyun-Sool;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.523-528
    • /
    • 2007
  • The objectives of this research are to investigate the mechanism of coagulation affecting UF, find out the effect of metal salt coagulant on membrane fouling. Either rapid mixing + UF or slow mixing + UF process caused much less flux decline. For PACl coagulant, the rate of flux decline was reduced for both hydrophilic and hydrophobic membrane than alum due to higher formation of flocs. In addition, the rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. In general, Coagulation pretreatment significantly reduced the fouling of the hydrophilic membrane, but did little decrease the flux reduction of the hydrophobic membrane. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$ increases rapidly. This experimental results pointed out that precipitates of $Al(OH)_{3(s)}$ rather than dissolved Al(III) formation is major factor affecting flux decline for the membrane.

Recent Progress in Waste Treatment Technology for Pyroprocessing at KAERI (파이로 공정폐기물 처리기술의 최근 KAERI 연구동향)

  • Park, Geun-Il;Jeon, Min Ku;Choi, Jung-Hoon;Lee, Ki-Rak;Han, Seung Youb;Kim, In Tae;Cho, Yung-Zun;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.279-298
    • /
    • 2019
  • This study comprehensively addresses recent progress at KAERI in waste treatment technology to cope with waste produced by pyroprocessing, which is used to effectively manage spent fuel. The goal of pyroprocessing waste treatment is to reduce final waste volume, fabricate durable waste forms suitable for disposal, and ensure safe packaging and storage. KAERI employs grouping of fission products recovered from process streams and immobilizes them in separate waste forms, resulting in product recycling and waste volume minimization. Novel aspects of KAERI approach include high temperature treatment of spent oxide fuel for the fabrication of feed materials for the oxide reduction process, and fission product concentration or separation from LiCl or LiCl-KCl salt streams for salt recycling and higher fission-product loading in the final waste form. Based on laboratory-scale tests, an engineering-scale process test is in progress to obtain information on the performance of scale-up processes at KAERI.

Performance Analysis of Pyrotechnic Devices on the Reliability of Thermal Batteries (열전지의 신뢰성에 미치는 파이로테크닉 부품의 특성분석)

  • Cheong, Hae-Won;Kang, Sung-Ho;Kim, Kiyoul;Cho, Jang-Hyeon;Ryu, Byungtae;Baek, Seung-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-123
    • /
    • 2019
  • Thermal batteries are also called molten-salt batteries as the electrolyte is mainly composed of molten salt. The molten-salt electrolyte is a solid that does not conduct electricity at room temperature, but when it is melted by a pyrotechnic heat source, it becomes an excellent ionic conductor. Thermal batteries are a kind of pyrotechnic battery because they operate only when the solid electrolyte is melted by the heat energy provided by pyrotechnic materials. Pyrotechnic components used in a thermal battery include heat sources, fuse strips, and an igniter. The reliability of these pyrotechnic components critically affects the reliability and performance of the battery that must supply electricity stably to guided munitions even under extreme environmental conditions. Different igniter types offer different advantages: notch-type igniters offer improved ignition probability, whereas film-type igniters offer improved safety. The addition of metal oxides to the heat paper could improve the burn rate, and the ignition reliability could be greatly improved by using it with a flame igniter at the same time. Using a two-step reduction process, high-purity Fe particles in coral form can be safely obtained.

Effect of $ZnCl_2$ on Formation of Carbonized Phenol Resin Anode

  • Kim Han-Joo;Hong Ji-sook;Son Won-Ken;Park Soo-Gil;Oyama Noboru
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2000
  • For replacing Li metal at Lithium ion Battery(LIB) system, we used carbon powder material which prepared by Pyrolysis of Phenol resin as starting material. It became amorphous carbon by Pyrolysis through it's self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. However, it has a problem with structural destroy due to weak carbon-carbon bond. So, we used $ZnCl_2$ as the pore-forming agent. This inorganic salt was used together with the resin serves not only as the pore-forming agent to form open pores, which grow into a three-dimensional network structure in the cured material, but also as the microstructure-controlling agent to form a loose structure doped with bulky dopants. We used SEM in order to find to difference of structure, and can calculate the distance of interlayer by XRD analysis. CV test showed oxidation and reduction.

Preparation and Structural Characterization of Silk Fibroin Powder and Film (견 피브로인 분말과 필름의 제조 및 구조 분석)

  • 최해경;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.2
    • /
    • pp.142-153
    • /
    • 1995
  • This study is undertaken to investigate proper condition and dissolution method of silk fibroin to use it functional material as powder or membrane. Silk fibroin was dissolved with calcium chloride ethanol aqueous solution and hydrochloric acid. When silk fibron was dissolved with calcium chloride ehanol aqueous solution, main chain of silk fibroin was degradaded and molecular conformation was changed. Silk fibroin powder was made from silk fibroin solution. It showed lower thermal decomposition temperature and crystallinity than those of native silk fibroin. And Its molecular conformation was random coil structure. By acid gydrolysis, main chain of silk fibroin was attacked randomly. Silk fibroin powder from hydrolysate showed high crystallinity and thermal decomposition temprature. $\beta$-form molecular conformation was found by IR and X-ray diffraction. Silk fibroin powder form dissolved part with hydrochloric acid showed low thormal decomposition temperature but high crystallinity. During acid hydrolysis, transition of molecular structure of silk fibroin occurred, and it changed to $\alpha$-helix. Silk fibroin film was achieved by casting silk fibroin solution by ehanol solution or saturated vapor treatment, and its molecular conformation changed to $\beta$structure.

  • PDF

The Role of Excipients in Iontophoretic Drug Delivery: In vitro Iontophoresis of Isopropamide and Pyridostigmine through Rat Skin and Effect of Ion-pair Formation with Organic Anions

  • Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • The iontophoretic delivery across rat skin of quaternary ammonium salts (isopropamide: ISP, pyridostigmine: PS), which are positively charged over a wide pH range, was measured ill vitro. The study showed that: (a) iontophoresis significantly enhanced delivery of ISP and PS compared to respective passive transport; (b) delivery of ISP and PS was directly proportional to the applied continuous direct current density over the range of $0-0.69\;mA/cm^2;$ (c) delivery of ISP and PS was also proportional to the drug concentration in the donor compartment over the range of $0-2{\time}l0^{-2}M:$ (d) sodium ion in the donor compartment inhibited the drug transport possibly due to decreasing the electric transference number of the drug; (e) delivery of ISP and PS increased as the pH of the donor solution increased over the pH range 2-7 suggesting permselective nature of the epidermis, and inhibition of the transference number of the drugs by hydronium ion; (f) some organic anions such as taurodeoxycholate, salicylate and benzoate which form lipophilic ion-pair complexes with ISP inhibited the delivery of ISP. The degree of inhibition by the organic anions was linearly proportional to the extraction coefficient $(K_e)$ of ISP from the partition system with each counteranion between phosphate buffer (pH 7.4) and n-octanol. For PS, however, taurodeoxycholate, but not salicylate and benzoate inhibited the iontophoretic delivery. It suggests that not only sodium ion and hydronium ion but also the counteranions which form lipophilic ion-pairs with quaternary ammonium drugs are not favorable components in formulating the donor solution of the drugs to achieve an effective iontophoretic delivery.

  • PDF

Cryoscopy of Amine-Polytungstates (다중텅그스텐산 아민염의 분자량 측정)

  • Pyun, Chong-Hong;Sohn, Youn-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.126-131
    • /
    • 1974
  • Trioctylamine-and tricaprylylmethylammonium chloride-tungstate salts have been prepared by solvent extraction from the sodium tungstate solution of various acidities(pH = 2, 4, 6). The molecular weights of the amine-tungstate salts thus obtained could be cryoscopically measured in benzene by means of a home-built Wheatstone bridge utilizing thermistor with sensitivity of 1/$4000^{\circ}C$. The cryoscopic data along with the results of chemical analysis and infrared spectra of the salts indicate that the amine-tungstates prepared at pH = 2 and 4 are all metatungstate whereas the salt obtained at pH = 6 is an unknown form quite different from the expected paratungstate.R = 0.14. By hydrogen bonding a guanidyl nitrogen of a sulfaguanidine molecule is linked to the sulfonyl oxygens of the other molecules indirectly through two different water molecules. The role of water molecule is both a .nor and an acceptor in hydrogen-bonding formation and these hydrogen bonds are tetrahedrally o?ented. The hydrogen-bonding networks form infinite molecular layers parallel to (001) plane.

  • PDF