• Title/Summary/Keyword: Salt damage

Search Result 276, Processing Time 0.025 seconds

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

Effect of Arresting MCF-7 Human Breast Carcinoma Cell at G2/M Phase of Trichosanthes Kirilowii (천화분이 MCF-7 유방암 세포주의 G2/M 세포주기 억제에 미치는 영향)

  • Jeong, Seung-Min;Jeong, Mi-Kyung;Ko, Seong-Gyu;Choi, You-Kyung;Park, Jong-Hyeong;Jun, Chan-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.857-862
    • /
    • 2011
  • The purpose of this study is to investigate the anti-proliferative mechanism by Trichosanthes kirilowii (TCK) in MCF-7 human breast carcinoma cell. In this study, we used human breast cancer cell line, Michigan cancer foundation-7 cells (MCF-7 cells). They were co-incubated with 30~200 ${\mu}g$/ml TCK for 48 hours, and cell viability was measured by Water-soluble tetrazolium salt-1 (WST-1) assay. After MCF-7 cells were exposed to 60 ${\mu}g$/ml of TCK for 0, 3, 6, 12, 24, 48 hours, We performed flow analysis cytometry sorting(FACS) and western blot analysis. We investigated the effect of dose-dependent cell growth inhibition by TCK, which could be proved by WST-1 assay. Also, flow cytometry analysis showed that TCK increased percentage of subG1 phase and G2/M phase cell cycle. In addition, TCK induced apoptosis through the expression of caspase-9, -3 and poly(ADP-ribose) polymerase(PARP) activation. Moreover, we showed that ATM-dependent G2/M phase arrest by DNA damage and phosphorylation of chk2, cdc25C, cdc2(Tyr15). Taken together, these results suggest that by G2/M phase arrest through DNA damage and inducing of apoptosis through intrinsic pathway, TCK may have potential tumor suppressor in breast cancer.

Effects of Salt in Soil Condition on Chlorophyll Fluorescence and Physiological Disorder in Panax ginseng C. A. Meyer (토양 염류 농도가 인삼 잎의 엽록소 형광반응 및 생리장해 발생에 미치는 영향)

  • Kim, Jang Uk;Hyun, Dong Yun;Kim, Young Chang;Lee, Jung Woo;Jo, Ick Hyun;Kim, Dong Hwi;Kim, Kee Hong;Sohn, Jae Keun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.446-453
    • /
    • 2015
  • Background : Excessively high concentration of sodium ion causednutrient deficiency and significantly decrease growth. This study was carried out to determine the limiting concentration range of sodium ion in the soil of ginseng field. Methods and Results : The growth of the ginseng cultivar Chunpoong reduced with increase in salinity, and the rate of growth reduction was higher in shoots than that of roots. Particularly, ginseng plants cultivated at high level of nitrate nitrogen or sodium may suffer delayed development and stunted growth. Chlorophyll damage occurred on the leaves of ginseng planted in relatively high levels (> $0.2cmol^+/kg$) of sodium ion, as determined by the fluorescence reaction. The incidence of physiological disorder in ginseng cultivated at 249 sites was correlated with the concentration of sodium ion in the soils. About 74% of ginseng fields in which physiological disorders occurred had concentrations of sodium ion in soil greater than $0.2cmol^+/kg$. In contrast, the concentration of sodium ions at 51 of 85 sites where no damage occurred was relatively ($0.05cmol^+/kg-0.15cmol^+/kg$). Conclusions : The concentration of sodium ion in soil of ginseng fields can be classified into three levels optimum (${\leq}0.15$), permissible allowance (0.15 - 0.2) and excessive (> 0.2).

Study on Atmospheric Corrosion for Two Different Marine Environments in India

  • Saha, Jayanta Kumar
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • In any developing nation major investment goes for infrastructure and it is not exception in India. Good numbers of buildings, bridges, shopping malls, car parks etc. are coming up with steel for sustainable development. Thus protecting the structures from corrosion are the challenges faced by professionals for all types of steel structures. About 3% of GDP is accounted for loss due to corrosion. To combat this up to date corrosion map is called for as the country has wide variation of climatic zones with vastcoastline. Logically organic paint system can be prescribed based on the corrosion rate on bare steel with respect to environment. Present paper will emphasis on the study conducted on two types of structural steel coated with organic paint located in twomarine environment having been exposed for three years, Test coupons made from steels both bare and coated are deployed at two field stations having marine (Digha) and industrial marine (Channai) environments. Various tests like AC impedance DC corrosion, polarisation, salt spray test, $SO_2$ chamber and Raman spectroscopy were carried out both in laboratory on fresh as well as coupons collected from exposure sites. Rust formed on the bare and scribed coated coupons are investigated. It is found that normal marine environment at Digha exhibits higher corrosion rate than polluted marine environment in Channai. Rust analysis indicates formation of ${\propto}$-FeoOH protects or reduces corrosion rate at Channai and formation of non-protective ${\gamma}$-FeoOH increases corrosion rate at Digha. The slower corrosion rate in Channai than at Digha is attributed due to availability of $SO_2$, in the environment, which converts non‐protective rust ${\gamma}$-FeoOH to protective rust ${\propto}$-FeoOH. While comparing the damage on the coated panels it is found that low alloy structural steel provides less damage than plain carbon steel. From the experimentations a suitable paint system specification is drawn for identical environments for low medium and high durability.

Cathodic Protection of Reinforced Concrete Slab with Zn-Mesh in Marine Environment (해양환경 중 Zn-mesh를 적용한 콘크리트 슬랩의 음극방식 특성)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1065-1068
    • /
    • 2008
  • Marine bridges are readily deteriorated due to the exposure to marine environment. The concrete deterioration occurred by corrosion of steel in concrete is mainly relevant to chloride in seawater. Chloride ions penetrate through porous concrete, and then reach to the reinforcing steel, and finally corroded them. The corrosion by-products(rusts) increase the volume as much as 6 to 10 times of origin steel. this creates expanding pressure and tensile stress, which cause the structures cracking and spalling. Sometimes the rebar corrosion is accelerated, and then collapsed catastrophically. In order to prevent corrosion damage, it is important to understand well regarding the reason of concrete corrosion, the quantification of its damage, and protection method/system to stop or to mitigate the corrosion. In this study, slab specimens were fabricated to evaluate the effect of cathodic protection which was simulated to marine bridges, and/or port structures. Zn-mesh sacrificial anode has been applied as a chathodic protection system and accelerated test conditions, i.e. temperature and salt concentration have been used in this study.

  • PDF

Study on Antioxidant and Anti-inflammatory Activities of Persicaria tinctoria (쪽의 항산화 및 항염증 활성에 대한 연구)

  • Kim, Soo-Jeung;Jang, Tae Won;Kim, Do-Wan;Park, Jae Ho
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.17-24
    • /
    • 2015
  • Objectives : Persicaria tinctoria belongs to the Polygonaceae family and it has been used as the natural dye traditionally. Also, it is well known that the Persicaria tinctoria is used for treating the following symptoms such as fever, inflammation and edema. The purpose of this study is to investigate the effective source of antioxidants and anti-inflammatory agent from various parts of Persicaria tinctoria.Methods : We investigated the antioxidative and anti-inflammatory properties of the Persicaria tinctoria extracts. Antioxidant activities were measured by 1,1-diphenyl-2- picrylhydrazyl (DPPH), 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, Fe2+ chelating activity and Reducing power of Persicaria tinctoria extracts. And its inhibitory effect against oxidative DNA damage was evaluated in non-cellular system using φX-174 RF I plasmin DNA. The anti-inflammatory effect of Persicaria tinctoria was measured by using the inhibitory efficacy for the amount of nitric-oxide (NO) produced in LPS induced RAW264.7 cells.Results : The extracts from stem part showed better DPPH scavenging activity compared to those of the leaf and root extracts. Their IC50s were measured as 7.17, 144.40 and 165.07 ug/ml, respectively. These results were similar to that of ABTS radical scavenging assay and reducing power. Also, Persicaria tinctoria showed the protective effects of DNA damage against oxidative stress and anti-inflammatory effect by suppression of NO production in LPS induced RAW264.7 cells.Conclusions : These results showed that various parts of Persicaria tinctoria can be used as an effective source of antioxidants and anti-inflammatory agents via antioxidative activities and anti-inflammatory effect.

An Analysis of International Research Trends in Green Infrastructure for Coastal Disaster (해안재해 대응 그린 인프라스트럭쳐의 국제 연구동향 분석)

  • Song, Kihwan;Song, Jihoon;Seok, Youngsun;Kim, Hojoon;Lee, Junga
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.1
    • /
    • pp.17-33
    • /
    • 2023
  • Disasters in coastal regions are a constant source of damage due to their uncertainty and complexity, leading to the proposal of green infrastructure as a nature-based solution that incorporates the concept of resilience to address the limitations of traditional grey infrastructure. This study analyzed trends in research related to coastal disasters and green infrastructure by conducting a co-occurrence keyword analysis of 2,183 articles collected from the Web of Science (WoS). The analysis resulted in the classification of the literature into four clusters. Cluster 1 is related to coastal disasters and tsunamis, as well as predictive simulation techniques, and includes keywords such as surge, wave, tide, and modeling. Cluster 2 focuses on the social system damage caused by coastal disasters and theoretical concepts, with keywords such as population, community, and green infrastructure elements like habitat, wetland, salt marsh, coral reef, and mangrove. Cluster 3 deals with coastal disaster-related sea level rise and international issues, and includes keywords such as sea level rise (or change), floodplain, and DEM. Finally, cluster 4 covers coastal erosion and vulnerability, and GIS, with the theme of 'coastal vulnerability and spatial technique'. Keywords related to green infrastructure in cluster 2 have been continuously appearing since 2016, but their focus has been on the function and effect of each element. Based on this analysis, implications for planning and management processes using green infrastructure in response to coastal disasters have been derived. This study can serve as a valuable resource for future research and policy in responding to and managing various disasters in coastal regions.

Weathering and Degradation Assessment of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea

  • Lee, Chan Hee;Lee, Myeong Seong;Kim, Jiyoung
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • The West Stone Pagoda at Gameunsaji Temple Site constructed in the 7th century is mainly composed of dark grey dacitic tuff bearing small numerous dioritic xenoliths. These xenoliths resulted in small holes due to differential weathering process from the host rocks. Physical strength of the pagoda was decreased due to weathering and damage caused by petrological, biological and coastal environmental factors. The southeastern part of the pagoda was extremely deteriorated that the rock surface showed exfoliation, fracture, open cavity, granular decomposition of minerals and salt crystallization by seawater spray from the eastern coast. The stone blocks were intersected by numerous cracks and contaminated by subsequent material such as cement mortar and iron plates. Also, the pagoda was colonized by algae, fungi, lichen and bryophytes on the roof rock surface and the gaps between the blocks. As a result of ultrasonic test, the rock materials fell under Highly Weathered Grade (HW) or Completely Weathered Grade (CW). Thus, conservational intervention is essentially required to prevent further weakening of the rock materials.

The Biological Functionality of Electro-Galvanized Steels Coated with a Hybrid Composite Containing Pyrethroid

  • Jo, Du-Hwan;Kim, Myung-Soo;Kim, Jong-Sang;Oh, Hyun-Woo
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • The electronic industries require environmentally-friendly and highly functional materials to enhance the quality of human life. Home appliances require insect repellent steels that work to protect household microwave ovens from incurring damage by insects such as fire ants and cockroaches in tropical regions. Thus, POSCO has developed new types of functional steels, coated with an array of organic-inorganic hybrid composites on the steel surface, to cover panels in microwave ovens and refrigerators. The composite solution uses a fine dispersion of hybrid solution with polymeric resin, inorganic and a pyrethroid additive in aqueous media. The hybrid composite solution coats the steel surface, by using a roll coater and is cured using an induction curing furnace on both the continuous galvanizing line and the electro-galvanizing line. The new steels were evaluated for quality performances, salt spray test for corrosion resistance and biological performance for both insect repellent and antimicrobial activity. The new steels with organic-inorganic composite coating exhibit extraordinarily biological functionalities, for both insect repellent and antimicrobial activities for short and long term tests. The composite-coating solution and experimental results are discussed and suggest that the molecular level dispersion of insecticide on the coating layer is key to biological functional performances.

A Study on the Economic Evaluation of Thermal Spray Methods for the Corrosion Protection of Steel (금속용사 방식공법의 경제성 평가에 관한 연구)

  • Jung Sung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.13-16
    • /
    • 2005
  • Generally, as corrosive protection processing of a steel structure, zinc galvanizing and heavy duty coating paint are applied. However, zinc galvanizing has the difficulty of restriction of a size, or on-site construction. Moreover, heavy duty coating paint has a problem with many administrative and maintenance expenses with short problem of adhesion, corrosion generating of a damage portion, and maintenance management cycle. In this study, a salt water spray test, CASS test, and the electrochemistry examination were carried out for the thermal metal spray method of construction for corrosive protection performance evaluation. Moreover, the corrosive protection life of a thermal metal spray method of construction was quantitatively calculated on the basis of this experiment. in consideration of LCC, the economical efficiency of a general corrosive protection method of construction and a thermal metal corrosive protection method of construction was compared. Consequently, although initial construction expense was estimated 16 to $30\%$ high, as for a thermal metal spray method of construction, it turns out that the administrative and maintenance expenses for 100 years became cheap 9.3 to 13 or more times.

  • PDF