• 제목/요약/키워드: Salt Conc

검색결과 5건 처리시간 0.019초

鹽化티타닐 製造에 關한 硏究 (Preparation of Titanyl Chlorde)

  • 천병두;신윤경
    • 대한화학회지
    • /
    • 제4권1호
    • /
    • pp.15-17
    • /
    • 1957
  • 1. Preparation of Titanium tetrachloride; The following precesses were strictly followed as the preliminary step to obtain pure $TiOCl_2$, titanyl chloride; First, pure Titanium Oxide mixed with carbon is rolled into pills. After drying up perfectly, these pills are heated at 900∼1000${\circ}C$. And then the pills are subjected to the flow of $Cl_2$ gas in a quartz tube heated to 900-1000${\circ}C$. Thus Titanium tetrachloride is obtained. 2. Preparation of $TiOCl_2$ ; Yellowish trobrown solution is made by pouring 80 g of conc. HCl (sp.gr. 1.19) to 45 gr of Titanium tetrachloride (approx. 2 times of theoretical amount). Then this solution is kept settled for 5-days in a desiccator filled with phosphorous pentoxide at room temperature. As the colorless amorphous solid thus obtained is washed with aceton, 36.5 g of the pure salt are obtained. 3. Determination of composition. The analysis of the sample taken from the deposit desiccated gives the following data; (A) Qualitative analysis; a) $Ti(OH)_4$ is precipitated by adding NaOH in water solution of the salt. b) Adding $AgNO_3$ solution, the water solution of the salt gives white precipitate of AgCl. c) When acid and $H_2O_2$ are added, the solution turns its color to redish brown (This proves that $TiO^{++}$ was converted into $TiO^{++}$ by oxidation of $H_2O_2$. (B) Quantitative analysis; a) $Ti(OH)_4$ precipitated by $10{\%}$ NaOH isalitatsubjected consecutively to the filtration and ignition in porcelain crucible at approx. 1000${\circ}C$. , then $TiO_2$ thus formed is weighed and calculated into Ti content. b) Chlorine involved in water solution of the salt is determined by Vorhardt method. Result: The values obtained from previous analysis, devied by their atomic weight gives the following composition: Ti : Cl = 1 : 2 Therefore $TiOCl_2$ should be given as its molecular formula. 4. Summary. When $TiCl_4$ is additated into conc. HCl, $TiO^{++}$ formed exists as a stable form, and forms $TiOCl_2$. However $TiOCl_2$ is unstable to heating. When the temperature is raised to $65{\circ}C$the decomposition of the solution is accelerated, and gives $TiO_2$ aq. $TiOCl_2$ in addition is highly hygroscopic.

  • PDF

수산물 가공폐수내 염분농도가 고율 혐기성 소화에 미치는 영향 (Effect of the Salt Concentration in Seafood Wastewater on the High-Rate Anaerobic Digestion)

  • 최용범;한동준;이해승;권재혁
    • 대한환경공학회지
    • /
    • 제35권10호
    • /
    • pp.730-736
    • /
    • 2013
  • 본 논문은 수산물가공 폐수내 염분농도가 고율 혐기성 소화공정에 미치는 영향을 파악하고자 수행되었다. HRT 6 hr 이상에서 TCODcr의 제거효율은 81.1~90.7%로 조사되어, 수산물 가공폐수 처리를 위한 최적 HRT는 6 hr 이상으로 조사되었다. 유기물 부하 7.83~17.37 $kgTCODcr/m^3$/day$에서 TCODcr 제거당 메탄 발생량은 0.23~0.38 $m^3CH_4/kgCODrem.$으로 STP 상태의 이론적 메탄가스 발생량 $0.35m^3CH_4/kgTCODrem$.과 유사하게 조사되었다. 운전기간 동안 biogas내 메탄 함량은 70.1~76.8%로 유입부하 변동에 거의 영향을 받지 않았다. 염분농도에 따른 혐기성 소화효율 검토결과, $4,000mgCl^-/L$ 이하에서 TCODcr의 제거효율은 83.4~89.2%로, $5,000mgCl^-/L$에서는 70% 중반의 제거효율을 나타내, 안정적인 처리효율을 위해서는 $4,000mgCl^-/L$ 이하로 유지하여야 한다. biogas내 메탄함량은 $3,000mgCl^-/L$ 이하에서는 64.7~73.3%로 조사되었으나 $4,000mgCl^-/L$ 이상에서는 50.1~56.9%로 염분농도가 증가할수록 감소하였다.

수산물 가공폐수의 호기성 생분해도에 미치는 염분농도의 영향 (Effect of Salt Concentration on the Aerobic Biodegradability of Sea Food Wastewater)

  • 최용범;권재혁;임재명
    • 대한환경공학회지
    • /
    • 제32권3호
    • /
    • pp.256-263
    • /
    • 2010
  • 본 논문은 염분농도가 호기성 생분해도에 미치는 영향을 파악하고, 그 결과를 수산물 가중 폐수 처리 위한 기초자료로 사용하기 위하여 수행되었다. $Cl^-$농도(1,400~18,000 mg/L)에 따른 유기물 제거효율 검토결과, $Cl^-$ 6,000 mg/L 이하에서 미생물들은 염분에 적응하였으나 $Cl^-$ 12,000 mg/L 이상에서는 반응시간이 길어져도 처리효율이 개선되지 않는 것으로 조사되었다. 생물학적 분해불가능한 용존성 유기물 함유계수 $Y_I$와 미생물 신진대사에 의한 inert 물질 생성계수 Yp는 염분농도가 증가할수록 증가하였으며, $Cl^-$ 농도(0~18,000 mg/L)에 따른 용존성 유기물 비율은 10.8~13.1%로, 미생물 신진대사에 의한 inert 물질 생성비율은 7.0~24.6%로 조사되었다. $NH_3$-N 제거효율은, 원폐수는 HRT 18 hr에서 96.2%의 제거효율을 보였으나, $Cl^-$ 6,000 mg/L, HRT 22 hr에서 96.5%, $Cl^-$ 12,000 mg/L, HRT 30 hr에서 90.2%, $Cl^-$ 18,000 mg/L, HRT 45 hr에서 90.3%의 제거효율을 나타내, 질산화 과정이 유기물 제거 보다 염분농도에 더 민감한 것으로 조사되었으며, 폐수내 $Cl^-$ 6,000 mg/L 이상부터는 $NO_2$-N에서 $NO_3$-N로의 전환율도 낮게 조사되었다.

해산물 가공폐수내 염분농도가 혐기성 최종생분해도와 유기물 다중분해속도에 미치는 영향 (Effect of the Salt Concentration in Seafood Processing Wastewater on the Anaerobic Ultimate Biodegradability and Multiple Decay Rate of Organic Matter)

  • 최용범;권재혁;임재명
    • 대한환경공학회지
    • /
    • 제32권11호
    • /
    • pp.1038-1045
    • /
    • 2010
  • 본 연구는 해산물 가공폐수를 대상으로 혐기성 미생물, S/I ratio (substrate/inoculum)와 염분농도에 따른 혐기성 최종 생분해도를 평가하였다. S/I ratio 0.9에서 혐기성 소화슬러지와 입상슬러지의 최종 생분해도는 각 72.0, 92.0%로 조사되었으며, 다중분해속도 상수 $k_1$은 소화슬러지가 $0.0478{\sim}0.1252\;day^{-1}$, 입상슬러지는 $0.0667{\sim}0.1709\;day^{-1}$로 조사되어 입상슬러지가 해산물 가공폐수의 혐기성 처리에 적합하였다. 혐기성 최종생분해도 실험을 통해 산정된 최적 S/I ratio는 0.9였으며, 염분농도에 따른 생분해도 실험 결과, $3,000\;mgCl^-/L$ 이하에서 85% 이상의 유기물 제거효율을 나타냈다. 다중분해속도 상수 $k_1$은, $3,000\;mgCl^-/L$ 이하에서는 $0.1603{\sim}0.1709\;day^{-1}$, $6,000\;mgCl^-/L$ 이상에서 $0.0492{\sim}0.0760\;day^{-1}$로 산정되었으며, $k_2$$6,000\;mgCl^-/L$ 이하에서는 $0.0183{\sim}0.0348\;day^{-1}$, $9,000\;mgCl^-/L$에서는 $0.0154\;day^{-1}$로 조사되어, 반응속도 상수($k_1$, $k_2$)는 $Cl^-$ 농도가 증가할수록 감소하였으며, 빠르게 분해되는 유기물 비율($S_1$)과 분해속도 또한 감소시키는 것으로 조사되었다.

Chelate 법(法)에 의(依)한 Phytin 분석(分析)에 관(關)한 연구(硏究) (Studies on the analysis of phytin by the Chelatometric method)

  • 신재두
    • Applied Biological Chemistry
    • /
    • 제10권
    • /
    • pp.1-13
    • /
    • 1968
  • phytin은 phytic acid의 금속염(金屬鹽)(주(主)로 Ca 와 Mg)임으로 그중(中)의 P,Ca 및 Mg를 정량(定量)하면 순도(純度)를 알 수 있고, 또 분자식(分子式)을 추정(推定)할 수 있다. 저자(著者)는 phytin 중(中)의 P,Ca 및 Mg를 정량분석(定量分析)하는 새로운 방법(방법)으로 서 phytin을 건식(乾式) 분해(分解)하고 ion 교환수지(交換樹脂)로 처리한 다음 Chelate 법(法)으로 정량(定量)하는 방법(方法)을 확정(確定)켰으며 그 결과(結果)를 요약(要約)하면 다음과 같다. 1) phytin 분석(分析)의 전처리과정(前處理課程)으로서는 phytin을 conc. $HNO_3$로 적시면서 $550{\sim}660^{\circ}C$에서 회화(灰化)하는 건식분해법(乾式分解法)을 썼다. 이 방법(方法)은 습식분해법(濕式分解法)보다 분석결과(分析結果)가 정확(正確)하다. 2) phytin을 건식분해(乾式分解)한 시료(試料)를 가지고 종래법(從來法)과 새로운 분석법(分析法) (본법(本法))에 의하여 P,Ca 및 Mg를 정량(定量)하였으며, 본법(本法)은 다음고 같다. phytin 회분(灰分 HCl 용액(溶液)을 양(陽) ion 교환수지(交換樹脂)로 처리하여 양(陽) ion 구분(區分)과 음(陰) ion 분리(分離)하고 양(陽) ion 구분(區分)의 일부(一部)를 pH 7.0로 한다음 완충액(緩衝液)($NH_3-NH_4Cl$으로 pH 10으로 하고 BT 지시약(指示藥)을 써서 표준(標準) EDTA 용액(溶液적정(滴定)하여 Ca와 Mg의 합계치(合計値)를 얻었다. 또 양(陽) ion 구분(區分)의 일부(一部)를 pH 7.0로 하고 표준(標準) EDTA 용액(溶液)을 소량(少量)넣고 8N-KOH로 pH $12{\sim}13$으로 하고 N-N 희석분말(稀釋粉末)을 지시약(指示藥) 으로써 표준(標準) EDTA 용액(溶液)으로 적정(滴定)하여 Ca 치(値)를 얻었다. Ca와 Mg의 합계결정치(合計決定値)와 Ca 적정치(滴定値) 차(差)로 Mg 치(値)를 얻었다. 음(陰) ion 구분(區分)으로부터 상법(常法)에 의하여 $MgNH_4PO_4$의 침전(沈澱)을 만들어서 HCl에 녹키고 일정량(一定量)의 표준(標準) EDTA 용액(溶液)을 넣어 pH 7.0로 한다음 완충액(緩衝液)으로 pH 10으로 하고 BT 지시약(指示藥)을 써서 표준(標準) Mg $SO_4$용액(溶液)으로 적정(滴定)하여 P 치(値)를 얻었다. 본법(本法)으로 Na-phytate를 분석(分析)한 결과(結果) Na-phytate의 분자식(分子式)을 $C_6H_6O_{24}P_6Mg_4CaNa_2{\cdot}5H_2O$라고 하였을 때의 이론치(理論値)에 비(比)하여 P가 98.9% Cark 97.1%, Mg가 99.1%이고 통계처리(統計處理)한 결과분석치(結果分析値)와 이론치(理論値)는 잘 일치(一致)된다. 그러나 종래법(從來法)에 의(依)한 분석치(分析値)는 이론치(理論値)에 비(比)하여 P가 92.40%, Cark 86.80%, Mg가 93.80%로서 이론치(理論値)와 일치(一致)하지 않는다. 3) Na-phytate를 전분(澱粉)과 일정(一定)한 비(比)로 혼합(混合)하고 본법(本法)으로 P,Ca 및 Mc를 정량(定量)한 결과(結果) 이들의 회수율(回收率)은 거의 100%이었다. 4) 본분석법(本分析法)의 정확성(正確性)을 재확인(再確認)하기 위하여 phytic acid 수용액(水溶液)에 $CaCl_2$수용액(水溶液)을 phytic acid 1M:$CaCl_25M:McCl_220M$의 비(比)로 반응(反應)서키어서 Ca 1 원자(原子), Mg 4원자함유(原子含有)된 Na-phytate를 합성(合成)하였으며 이것의 P,Ca 및 Mg 분석치(分析値)와 의(依한) 조제(調製) Naphytate의 분석치(分析値)와 일치(一致)되었다. 이상(以上)과 같이 phytin 시료(試料)를 건식분해(乾式分解)하고 ion 교환수지(交換樹脂)로 처리(處理)한 다음 Chelate 법(法)으로 P,Ca 및 Mg를 정량(定量)하는 본법(本法)은 정확(正確)하고 신속(迅速)한 phytin의 새 분석방법(分析方法)이라고 사료(思料)되는 바이다.

  • PDF