• Title/Summary/Keyword: Salinity distribution

Search Result 534, Processing Time 0.03 seconds

Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea (울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포)

  • LEE, MIN-JI;KIM, DONGSEON;KIM, YOUNG OK;SOHN, MOONHO;MOON, CHANG-HO;BAEK, SEUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 2016
  • To assess the relationship between environmental factors and seasonal phytoplankton community structure, we investigated abiotic and biotic factors in Ulsan Bay, Korea. We divided the bay into two areas based on geographical characteristics and compared the difference in each factor between inner and outer bay with t-test statistics. As a result, temperature in the outer bay was higher than that of the inner bay during winter (t = -5.833, p < 0.01) and autumn (p > 0.05). However, opposite trend was observed during spring (t = 4.247, p < 0.01) and summer (t = 2.876, p < 0.05). Salinity was significantly lower in the inner bay than in the outer bay in winter, spring, and summer (p < 0.01). However, the salinity was not significantly different between the inner and the outer bay in the autumn (p > 0.05). In particular, high nutrient concentration was observed in most stations during winter season due to vertical well mixing. The nutrient concentration was significantly higher in surface layers of inner bay after rainfall, particularly in the summer. The relative contribution (approximately 70%) of < $20{\mu}m$ (nano and pico) size phytoplankton was increased in all seasons with continuously low nutrients from the offshore water due to their adaption to low nutrient without other large competitors. Interestingly, high population of Eutreptiella gymnastica was kept in the inner bay during the spring and summer associated with high DIN (nitrate+nitrite, ammonium) after river discharge following rainfall, suggesting that DIN supply might have triggered the increase of Eutreptiella gymnastica population. In addition, high density of freshwater species Oscillatoria sp. and Microcystis sp. were found in several stations of the inner bay that were provided with large amounts of freshwater from the Tae-wha River. Diatom and cryptophyta species were found to be dominant species in the autumn and winter. Of these, centric diatom Chaetoceros genus was occupied in the outer bay in the autumn. Cryptophyta species known as opportunistic micro-algae were found to have high biomass without competitors in the inner bay. Our results demonstrated that Ulsan Bay was strongly affected by freshwater from Tae-wha River during the rainy season and by the surface warm water current from the offshore of the bay during dry season. These two external factors might play important roles in regulating the seasonal phytoplankton community structures.

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.

Bioecological Characteristics of Coral Habitats around Moonsom, Cheju Island, Korea I. Environment Properties and Community Structures of Phytoplankton (제주도 문섬 산호서식지 주변의 생물생태학적 특성 I. 환경특성과 식물플랑크톤의 군집구조)

  • Choa, Jong-Hun;Lee, Joon-Baek
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • Environmental factors and phytoplankton community have been bimonthly investigated in order to clarify the bioecological characteristics of coral habitats around Moonsom at the southern Cheju Island from September 1995 to July 1996. Annual mean temperature and annual mean salinity were $17.4^{\circ}C$ and 34.06 psu, respectively, showing lower temperature-higher salinity in winter and higher temperature-lower salinity in summer, which means such conditions are inadequate for coral reef formation. Nutrient concentrations represent that total nitrogen ranged from $0.07{\sim}10.08\;{\mu}M$, phosphate from $0.05{\sim}1.70\;{\mu}M$, and silicate from $3.08{\sim}21.86\;{\mu}M$. The N/P ratio showed the range of 9.59-10.60 with decreasing offshore-ward, which means the phytoplankton community could be limited by nitrogen sources. Annual mean euphotic depth was 32.0m (18.9m-48.6m) with difference according to season and reveals the close relationship with the depth of coral distribution. Chlorophyll a concentrations of phytoplankton ranged from $0.12{\sim}1.51\;{\mu}g\;L^{-1}$ and standing crops from $1.5{\times}10^3{\sim}7.0{\times}10^5\;cells\;L^{-1}$, showing higher at inshore than at offshore with a blooming in May. A total of 128 species of phytoplankton occurred in all stations, representing 99 spp. of diatoms, 26 spp. of dinoflagellates, 2 spp. of silicoflagellates and 1 sp. of blue-green algae. Diatoms are main taxa in all seasons except for occupying by dinoflagellates in summer. Among dominant species, fParalia sulcata (Ehrenberg) Cleve and Cylindrotheca closterium (Ehrenberg) Lewin & Reimann were predominant and are likely to be main food sources for coral community. Annual mean species diversity index (H') was 1.84, showing lower than around the coast line of Cheju Island.

  • PDF

Fluid Inclusions in Amethyst from the Korea Amethyst Deposit, Uljin, Gyeongbuk (경북 울진 코리아 광상의 자수정에 대한 유체포유물 연구)

  • Lee, Mi-Lyoung;Yang, Kyoung-Hee;Lee, Ju-Youn;Kim, Gyo-Tea
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • Three distinct types of fluid inclusions in amethyst and quartz crystals are associated with metamorphic events in the Korea Amethyst deposit from Uljin-Gun, Gyeongbuk Province. The amethyst displays bimodal grain size distribution in fine-grained, strain-free equigranular quartz with coarse-grained quartz grains with kink bands and undulose extinction. Type I inclusions are liquid-rich and salinity is 0~7 wt% NaCl and the homogenization temperatures ($T_h$) $91{\sim}231^{\circ}C$ with eutectic temperatures ($T_e$) $-52{\sim}-20^{\circ}C$. Type II inclusions are vapor-rich (80~90 vol%). The salinity and $T_h$ ranges 3~6 wt% NaCl and $230{\sim}278^{\circ}C$, respectively with $T_e$ $-56{\sim}-23^{\circ}C$. Type III inclusions contain a daughter mineral other than NaCl. The salinity ranges 32~36 wt% NaCl and $T_h$ $210{\sim}271^{\circ}C$. The textural and fluid inclusion evidences suggest that the host Buncheon granite gneiss and Amethyst pegmatite experienced dynamic recrystallization and the studied fluid inclusions are metamorphic in origin. The metamorphic event possibly occurred at higher temperature than $271{\sim}278^{\circ}C$. The amethysts from Uljin Korea Amethyst can be distinguished from the synthetic amethyst on basis of the distinctive two and three-phases fluid inclusions. Furthermore, it is noticeable that Korea amethyst do not contain NaCl-bearing and $CO_2$-rich fluid inclusions unlike those compared to those from Eonyang and Samcheonpo deposits related to unmetamorphosed granitic rocks.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea III. Distribution Patterns of Water Masses and Nutrients in the Middle-Northern last Sea of Korea in October, 1995 (동해 극전선역의 영양염류 순환 과정 III. 1995년 10월 동해 중부 및 북부 해역의 수괴와 영양염의 분포)

  • CHO Hyun-Jin;MOON Chang-Ho;YANG Han-Seob;KANG Won-Bae;LEE Kwang-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.393-407
    • /
    • 1997
  • A survey of biological and chemical characteristics in the middle-northern East Sea of Korea was carried out at 28 stations in October, 1995 on board R/V Tam-Yang. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW), (2) Tsushima Surface Water (TSW), (3) Tsushima Middle Water (TMW), (4) North Korean Cold Water (NKCW), (5) last Sea Porper Water (ESPW). Other 4 mixed water masses were also observed. It is highly possible that the LSSW which occured at depths of $0\~30m$ in the most southern part of the study area is originated from the Yangtze River (Kiang) of China due to very low salinity $(<32.0\%_{\circ})$ relatively high concentration of dissolved silicate and no sources of freshwater input into that area. Oxygen maximum layer in the vertical profile was located near surface at northern cold waters and became deeper at the warm southern area. Oxygen minimum layer af depths $50\~100m$, which is TMW, were found in only southern area. In the vortical profiles of nutrients, the concentrations were very low in the surface layer and increased drammatically near the thermocline. The highest concentration occurred in the ESPW. The relatively low value of Si/P ratio in the ESPW (13.63) compared to other reports in the East Sea was due to continuous increase of P with depth as well as Si. The N : P ratio was about 6.92, showing that nitrogenous nutrient is the limiting factor for phytoplankton growth. The exponential relationship between Si and P, compared to the linear relationship between N and P, indicates that nitrate and phosphate have approximately the same regenerative pattern, but silicate has delayed regenerative pattern.

  • PDF

Oxygen-18 and Nutrients in the Surface Waters of the Bransfield Strait, Antarctica during Austral Summer 1990/91 (1990/91년 남극하계 브렌스필드 해협 표층해수의 $\delta$/SUP 18/O와 영양염 분포)

  • KANG, DONG-JIN;CHUNG, CHANG SOO;COOPER, LEE W.;KANG, CHEONG YOON;KIM, YEA DONG;HONG, GI HOON
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.250-258
    • /
    • 1992
  • The oxygen isotope composition of surface waters in the Bransfield Strait was determined as one extra state variable in order to characterize water masses in the region, since salinity is significantly modified due to the freezing and ice-melting in the polar region. The salinity, temperature, and $\delta$/SUP 18/O values vary from 34.0 to 34.5$\textperthousand$, -.05 to 2.1$^{\circ}C$ and -0.50 t -0.26$\textperthousand$, respectively. The combined effects of evaporation, precipitation, freezing, ice-melting are reflected in the widely scattered data. Although it is small, the distribution of $\delta$/SUP 18/O of the Bransfield Strait is strongly affected by the freezing-ice melting rather than the evaporation-precipitation. The ice melted fresh water which has higher temperature, depleted salinity and nutrients may be injected to the Bransfield Strait from the north. The concentrations of nutrients are decreasing gradually from the north to the south. The waters were characterized by two groups of higher (about 19.4) and lower N/P ratio (about 16.7). The lower N/P ratio is found in the northern part where ice-melted fresh water is injected. and the higher N/P ratio is found in the southern part of the Bransfield Strait. Although more precise work is needed, the deference of N/P ratio can be an evidence of the ice melted water injection to the Bransfield Strait. Chlorophyll a concentrations, in general, increase from northwest (Waddell Sea) to the southeast (Smith and Hosseason Islands). Probably the injection of nutrient depleted fresh water from the ice melting reduce the chlorophyll a concentration.

  • PDF

Misconception on the Yellow Sea Warm Current in Secondary-School Textbooks and Development of Teaching Materials for Ocean Current Data Visualization (중등학교 교과서 황해난류 오개념 분석 및 해류 데이터 시각화 수업자료 개발)

  • Su-Ran Kim;Kyung-Ae Park;Do-Seong Byun;Kwang-Young Jeong;Byoung-Ju Choi
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.13-35
    • /
    • 2023
  • Ocean currents play the most important role in causing and controlling global climate change. The water depth of the Yellow Sea is very shallow compared to the East Sea, and the circulation and currents of seawater are quite complicated owing to the influence of various wind fields, ocean currents, and river discharge with low-salinity seawater. The Yellow Sea Warm Current (YSWC) is one of the most representative currents of the Yellow Sea in winter and is closely related to the weather of the southwest coast of the Korean Peninsula, so it needs to be treated as important in secondary-school textbooks. Based on the 2015 revised national educational curriculum, secondary-school science and earth science textbooks were analyzed for content related to the YSWC. In addition, a questionnaire survey of secondary-school science teachers was conducted to investigate their perceptions of the temporal variability of ocean currents. Most teachers appeared to have the incorrect knowledge that the YSWC moves north all year round to the west coast of the Korean Peninsula and is strong in the summer like a general warm current. The YSWC does not have strong seasonal variability in current strength, unlike the North Korean Cold Current (NKCC), but does not exist all year round and appears only in winter. These errors in teachers' subject knowledge had a background similar to why they had a misconception that the NKCC was strong in winter. Therefore, errors in textbook contents on the YSWC were analyzed and presented. In addition, to develop students' and teachers' data literacy, class materials on the YSWC that can be used in inquiry activities were developed. A graphical user interface (GUI) program that can visualize the sea surface temperature of the Yellow Sea was introduced, and a program displaying the spatial distribution of water temperature and salinity was developed using World Ocean Atlas (WOA) 2018 oceanic in-situ measurements of water temperature and salinity data and ocean numerical model reanalysis field data. This data visualization materials using oceanic data is expected to improve teachers' misunderstandings and serve as an opportunity to cultivate both students and teachers' ocean and data literacy.

Water Mass Stability of Deep Ocean Water in the East Sea (동해 심층수의 수괴 안정성)

  • Moon D.S.;Jung D.H.;Shin P.K.;Kim H.J.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.285-289
    • /
    • 2004
  • Oceanographic observation and qualitative analysis for deep ocean water in the East Sea were carried out from January 2003 to January 2004, in order to understand the characteristics of deep sea water in the East Sea. Temporal and spatial variation of water masses were discussed from survey of the study area including the coastal sea of Kwangwon province in where the polar front mixing cold and warm water masses were formed. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW) (2) Tsushima Surface water (TSW) (3) Tsushima Middle Water (TMW) (4) North Korea Cold Water (NKCW) and (5) East Sea Proper Water (ESPW). In winter, surface water in coastal sea of Kwangwaan Kosung region were dominated by North Korean Cold Water (NKCW). As Tsushima warm current were enforced in summer, various water masses were vertically emerged in study area, in order of TSW, TMW, NKCW and ESPW. It is highly possible that the LSSW which occurred at surface water of september is originated from influx of fresh water due to the seasonal rainy spell. Nevertheless water masses existed within surface water were seasonally varied, water quality characteristics of East Sea Proper Water (ESPW) under 300 m did not changed all the seasons of the year.

  • PDF

Zoogeography of Taiwanese Fishes

  • Nakabo, Tetsuji
    • Korean Journal of Ichthyology
    • /
    • v.21 no.4
    • /
    • pp.311-321
    • /
    • 2009
  • Three categories (freshwater, amphidromous, and marine fishes) of Taiwanese fishes are analyzed on the basis of zoogeographic elements, viz. China element, Indo-China element, Indo-West Pacific element, Indo-Pacific element, North-Pacific element, Japan-Oregon element, and circumtropical element. Freshwater fishes, which include the China and Indo-China elements, are distributed on part of the boundary area between the Palaearctic and Oriental regions of Wallace (1876). Diadromous fishes include the North-Pacific, Indo-China and Indo-West Pacific elements. Taiwanese salmon, a landlocked (initially diadromous) species that became established in Taiwan between 0.5 my B.P. and the early Pleistocene, is recognized as a distinct taxon included within the Oncorhynchus masou complex, which comprises here three species and two subspecies, viz. Oncorhynchus masou masou (Sancheoneo, Songeo, Sakura-masu or Yamame), O. masou ishikawae (Satsuki-masu or Amago), O. sp. (Biwa-masu), and O. formosanus (Taiwanese salmon), based on molecular, morphological and biological studies. Marine fishes are discussed under the following headings, brackish-water fishes (fishes of brackish waters and seas adjacent to continental coastlines, North Pacific and Indo-West Pacific elements; fishes of brackish waters and seas primarily around islands, Indo-West Pacific element), reef fishes (fishes of inshore reefs along continental coastlines from 0 to ca.100 m depth, Indo-West Pacific element; fishes of inshore reefs primarily around islands from 0 to ca.100 m depth, Indo-West Pacific element; fishes of offshore reefs along continental shelf edges from ca.150 to 300 m depth, circumtropical and Indo-Pacific elements; fishes of offshore reefs primarily around islands from ca.150 to 300 m depth, Indo-Pacific element), demersal fishes (fishes on continental shelves shallower than ca.150 m depth, Indo-West Pacific and Japan-Oregon elements; fishes on edges and upper continental slopes from ca.150 m to 500 m depth, Indo-West Pacific, Indo-Pacific, and circumtropical elements; fishes on lower continental slopes to abyssal plains from ca.500 m to 6,000 m depth, circumtropical element and rarely Indo-Pacific element), pelagic fishes (epipelagic fishes from 0 to ca.150 m depth, Indo-West Pacific, Indo-Pacific or circumtropical elements; meso- and bathypelagic fishes from ca.150 to 3,000 m depth, circumtropical element). The distribution of Taiwanese marine fishes are influenced by the Kuroshio Current, low-salinity and low-temperature waters from mainland China, and sea-bottom topography.

The Mineralogy and Geochemistry of the Uppermost Sediments of the Lake Hovsgol, North Mongolia : It's Implication to the Paleoenvironmental Changes

  • Tumurhuu, D.;Narantsetseg, Ts.;Ouynchimeg, Ts.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.3-3
    • /
    • 2004
  • One short core with length of 146cm(HB-107, at coordinates of $N51^{\circ}$11'37.5";$E100^{\circ}$24'45.6", from 229m water depth was subject of the present study. The sub-samples of the core were analyzed for the water contents (WC%), biogenic silica, identification of the main phases, grain size distribution, geochemistry and some physical properties of sediment(Wet density and Magnetic susceptibility) with aims of recording palaeo-environmental changes in Northem Mongolia. The evaluation of the geochemical and mineralogical proxies on palaeo-climated and palaeo-environmental changes are based on comparison to the behvior of biogenic silica through core, as later one had been showed itself, as good indicator of the climate and environmental fluctuation. Age model of the investigating core based on previously C 14 dated core HB105 taken from the central part of the Hobsgol Lake and the result had been published elsewhere. The core consists of two litological varieties : upper diatomaceous silt, lower clay. According to the age model the upper diatomaceous silt formed during the Holocene, lower caly-during the late Pleistocene glacial period. The geochemistry and phase identification analysis on the core samples are resulted in determining main minerals that form the bottom sediments and their geochemistry. The main include quartz, felspar, muscovite, clinochlore, amphibole and carbonate phase(dolomite and calcite). Through the core not only occur the relative quantitative changes of the main phases, but also happen that the carbonate phase completely disappear in diatomaceous silt. This is believed to be related to the lake water salinity changes, which occurred during the trassition period from Pleistocene glacial-to the Holocene interglacial. These abrupt changes of the mineralogy have been clearly traced in geochemistry of sediments, specially in calcium concentration, which is high in lower clay and low in upper diatomaceous silt. That means, geochemistry and mineralogy of the bottom sediments can be used as proxy data on palaeo-climate and palaeo-environmental changes.

  • PDF