• Title/Summary/Keyword: Salinity distribution

Search Result 534, Processing Time 0.032 seconds

Summer Hydrographic Features of the East Sea Analyzed by the Optimum Multiparameter Method (OMP 방법으로 분석한 하계 동해의 수계 특성)

  • Kim, Il-Nam;Lee, Tong-Sup
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.581-594
    • /
    • 2004
  • CREAHS II carried out an intensive hydrographic survey covering almost entire East Sea in 1999. Hydrographic data from total 203 stations were released to public on the internee. This paper summarized the results of water mass analysis by OHP (Optimum Multiparameter) method that utilizes temperature, salinity, dissolved oxygen, pH, alkalinity, silicate, nitrate, phosphate and location data as an input data-matrix. A total of eight source water types are identified in the East Sea: four in surface waters(North Korea Surface Water, Tatar Surface Cold Water, East Korean Coastal Water, Modified Tsushima Surface Water), two intermediate water types (Tsushima Middle Water, Liman Cold Water), two deep water types (East Sea Intermediate Water, East Sea Proper Water). Of these NKSW, MTSW and TSCW are the newly reported as the source water type. Distribution of each water types reveals several few interesting hydrographic features. A few noteworthy are summarized as follows: The Tsushima Warm Current enter the East Sea as three branches; East Korea Coastal Water propagates north along the coast around $38^{\circ}N$ then turns to northeastward to $42^{\circ}N$ and moves eastward. Cold waters of northern origin move southward along the coast at the subsurface, which existence the existence of a circulation cell at the intermediate depth of the East Sea. The estimated volume of each water types inferred from the OMP results show that the deep waters (ESIW + ESPW) fill up ca. 90% of the East Sea basins. Consequently the formation and circulation of deep waters are the key factors controlling environmental condition of the East Sea.

Long-term Variation in Ocean Environmental Conditions of the Northern East China Sea (동중국해 북부해역의 해양환경 장기변동)

  • Yoon, Sang Chol;Youn, Suk Hyun;Whang, Jae Dong;Suh, Young Sang;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.189-206
    • /
    • 2015
  • The present study was conducted to investigate the oceanic characteristics of the northern East China Sea through identification of long-term variation patterns of oceanic environment factors, for the objective of gaining understanding of oceanic environment characteristics of the northern waters of East China Sea, which closely influence the oceanic environments of waters nearby South Korea. The study methodology included the use of oceanographic data (water temperature, salinity, dissolved oxygen, nutrients, and chlorophyll-a) on the northern East China Sea from the Korea Oceanographic Data Center (KODC), collected by season for 20 years between 1995 and 2014. Moreover, for the study on the distribution of nutrients, chlorophyll-a. The main water masses that affected the northern East China Sea during the study period were classified as Changjiang diluted water (CDW), Tiawan current warm water (TCWW), Yellow Sea cold water (YSCW), and Kuroshio source water (KW). The forces of CDW and TCWW that forms on the surface and sub-surface layers had weakened for 20 years and the force of KW that forms on the intermediate layer showed a distinctively decreasing trend. However, YSCW showed a trend of expanding its force. Phosphate and silicate exhibited a decreasing tendency and phosphate showed a pattern of being depleted on the surface layer after 2009. It is determined that one of the reasons for this is the concentration of nutrients introduced through CDW and TCWW being too low. The concentration of chlorophyll-a exhibited an increasing tendency during the study period, the reasons for which are determined to be the influences of increase in water temperature, supply of nutrients via YSCW, and increases in light transmission from decrease in suspended solid due to the construction of the Three Gorges Dam.

Distribution Characteristic of Exploitable Macrobenthic Invertebrates of Beach Sediments in the Southern Coastal Water of Jeju Island (제주남부해역 사질대 유용생물 분포특성)

  • Ko, Jun-Cheol;Ko, Hyuck-Joon;Kim, Bo-Yeon;Cha, Hyung-Kee;Chang, Dae-Su
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.197-213
    • /
    • 2012
  • This study was performed to know the community structure of macrobenthos and environmental factors at each 16 stations in the subtidal sandy bottoms of the southern coastal water of Jeju Island from July to November, 2011. Mean temperature and mean salinity were $20.2-22.7^{\circ}C$, 33.7-34.9 psu which shows stable water messes. Chlorophyll a concentrations of phytoplankton ranged from 0.71 to 1.71 mg/L (1.11 mg/L), showing higher July than September and November with a blooming in summer. The mean concentration values (the ranges in parentheses) of nitrate, phosphate, and silicate are 0.029-0.206 mg/L (0.101 mg/L), 0.001-0.027 mg/L (0.007 mg/L), 0.024-0.682 mg/L (0.454 mg/L), respectively. However, the values higher coastal zone due to influxes from the land. A total of 37 species was identified. of these mollusca comprised 29 secies (78.4%); Echinodermata 5 (13.5%); Arthropoda 3 (8.1%). density and biomass were estimated to be 550 ind./$m^2$ and 20,951.8 gwwt/$m^2$, respectively. Mollusca were the most dominant faunal group in terms of abundance (481 ind./$m^2$) and number of species as well, whereas bivalves were predominant in biomass (16,647.6 gwwt/$m^2$). The dominant species were Vasticardium burchardi, Oblimopa japonica, Mactar achatina, Bornatemishistrioiw akawai, Paphia vernicosa, Amusium japonicum, Glycymeris albolineata, Astriclypeus manni in 15-30 m. The seasonal variation appeared as distinct, Mollusca of individual and biomass. When summer was make a slow increase, after the highest decrease in autumn. The abundance of macrobenthic invertebrates showed significant correlation with environmental factors (Chlorophyll a, DIN, $SiO_2$, Fine sand, Very fine sand) in almost all sampling depths. The biodiversity, evenness richness index were appeared 1.56-2.50 (H'), 0.49-0.80 (E'), 4.12-4.67 (R) in each stations. The dominace index were appeared Highest in November and lowest in September.

Soil Physical-chemical Characteristics on Indigenous Plant and Naturalized Plant of Coastal Sand Dune on Central-western Coastal Area, Korea (중부 서해안 해안사구 자생식물과 귀화식물 군락의 토양특성 비교)

  • Kim, Chan-Beom;Son, Yowhan;Bae, Yeong-Tae;Park, Ki-Hyung;Youn, Ho-Joong;Kim, Kyongha;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.323-330
    • /
    • 2013
  • This study was conducted to know the effect of major physical-chemical characteristics of soil to be in the area of indigenous and naturalized plant in the sand dune of the western coastal area of Korea. The study was performed on the sand dunes distributed across Taean-gun and Buan-gun and the study period was from April to October in 2010. Sixty nine of $5m{\times}5m$ study plots were installed and the distribution of plants were investigated. We measured the soil characteristics including soil pH, organic matter, total nitrogen, available $P_2O_5$, soil cation exchange capacity, exchangeable cation, EC and NaCl. As a result, soil texture was classified as sand, in case of average pH, NaCl, and EC of soil to be in the area of indigenous herbaceous plant were 7.77, 0.03% and $0.52ds.m^{-1}$, indigenous woody plant of the mean pH, NaCl and EC were 7.31, 0.01%, $0.23ds.m^{-1}$. In case of naturalized herbaceous plant of the mean soil pH, NaCl and EC were 7.12, 0.01%, $0.29ds.m^{-1}$, naturalized woody plant of the mean soil pH, NaCl and EC were 7.34, 0.01%, $0.20ds.m^{-1}$ respectively. On average, naturalize plants showed in low salinity concentration than indigenous plants.

Seagrass (Zostera marina L., Zosteraceae) Bed in the Brackish Lake Hwajinpo, Korea (화진포 기수호에 해산식물 거머리말 (Zostera marina L., Zosteraceae))

  • Lee, Sang-Yong;Kwon, Chun-Joong;Heo, Sung;Choi, Chung-Il
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.336-341
    • /
    • 2000
  • This study was conducted to clarify the habitat characteristics and distribution of seagrass. Zostera marina L. (Zosteraceae) in the brackish Hwajinpo Lake, Korea in June 1998 and July 2000. Z. marina beds were distributed along the sea-side cost of the lower lake mouth at 0.8 to 1.5m in death, and the seagrass bed area was about 3,200 m$^{2}$. Salinity, water temperature and pH were in the range of 8.0${\sim}$23.0$%_{o}$, 22.0${\sim}$23.7$^{\circ}C$ and 8.34${\sim}$8.62, respectively. Nutrient concentrations were generally now (TN: 24.34 ${\mu}$M, NH$_{4}$-N: 2.57 ${\mu}$M, NO$_{3}$-N: 0.56 ${\mu}$M, NO$_{2}$-N: 0.27 ${\mu}$M, TP: 2.08 ${\mu}$M, PO$_{4}$-P: 0.34 ${\mu}$M). Suspended particulate matters (SPM) concentration averaged 62.8 mg/l and particulate organic matter (POM) averaged 21.3 mg/l. Organic content of SPM averaged 33.9%. The beds substratum was composed of well-sorted, fine sand and its mean brain size was 3.13${\Phi}$. The Z. marina vegetation was almost submerged, and the morphological characteristics can be classified as steno-leaf phenotype by the shoot length, leaf width, and number of leaf vein. Shoot length and leaf width were 70.0${\sim}$126.5 cm and 5${\sim}$7 mm, respectively. Shoot densities ranged from 264 to 296/m$^{2}$, and the plants biomass was estimated at 332.6 to 373.0 g dw/m$^{2}$. Therefore, the habitats of Z. marina in Korea were recognized in a brackish lake, and morphological characteristics appeared to be variable.

  • PDF

Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea (동해 울산항에서 이화학적 환경요인 및 크기그룹별 식물플랑크톤 생체량의 계절적 변동)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6008-6014
    • /
    • 2013
  • This study aimed to understand seasonal variation of physico-chemical factors and biomass of size-fractionated phytoplankton at Ulsan seaport during the period from February 2007 to November 2009. Water temperature, salinity, dissolved oxygen (DO), pH, chemical oxygen demand (COD) and total suspended solid (TSS) varied in the range of 8.94-$24.26^{\circ}C$, 25.06-34.54 psu, 4.30-10.73 mg/L, 7.97-8.53, 0.66-40.70 mg/L and 57.4-103.3 mg/L, respectively. These factors showed no clear spatial variation unlike spatial pattern of inorganic nutrients and total chlorophyll-a (chl-a) concentration as biomass. Concentration of phosphate, nitrate and silicate ranged from 0.01 to 3.03 ${\mu}M$, 0.05 to 21.62 ${\mu}M$, and 0.01 to 27.82 ${\mu}M$, respectively, with 2 times higher concentration at inner stations than that at outer stations during the study period. Within the range of total chl-a concentration (0.36-7.11 ${\mu}gL^{-1}$), higher concentration (avg. 1.88 ${\mu}gL^{-1}$) of total chl-a were observed at inner stations compared to that (avg. 0.90 ${\mu}gL^{-1}$) at outer stations. Micro-sized phytoplankton dominated total biomass of phytoplankton in spring (34.0-81.2%), summer (35.1-65.6%) and winter (3.9-62.0%). Nano- and pico-sized phytoplankton contributed 58.2-74.5% and 22.4-38.2% to total biomass of phytoplankton in autumn, respectively. However, contribution in biomass of size-fractionated phytoplankton to total phytoplankton biomass showed no clear difference between inner and outer stations. Consequently, these results indicated that spatio-temporal distribution of phytoplankton biomass at Ulsan seaport was dominated by micro-phytoplankton (avg. 52.3%) during the study period except autumn, which was closely dependent on the concentration of inorganic nutrients (p<0.05).

Soil Salinity and Vegetation Distribution at Four Tidal Reclamation Project Areas (4개 간척 지구에 분포하는 식생과 토양 염류농도)

  • Lee, Seung-Heon;Ji, Kwang-Jae;An, Yeoul;Ro, Hee-Myong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.79-86
    • /
    • 2003
  • This research was conducted to present reference data to be used as newly reclaimed tidal land management. We investigated vegetation succession at 4 reclaimed/reclaiming project areas and discussed relationship with soil and vegetation trhrough investigation and analysis soil chemical characteristics at 2 areas. 14 families 58 kinds were investigated. Vegetation were variou at Dea-Ho conservation polt and Seok-Mun National Industrial Area which are maintaining naturally. Vegetation were simple at Hong-Bo and Dongjin and MinKyong river areas which effected sea water. Common species that were investigated at 9 sites were Suaeda asparagoides, Aster tripolium, Phragmites australis, Suaeda maritima, Suaeda japonica, Carex scabrifolis. As soil desalinization progressing, soil classified at first saline-soidc soil, the nest saline soil and then normal soil. Chenopodiaceae revealed at about 30 dS/m of soil ECe and existed to 10 dS/m of soil ECe. At about 20 dS/m of soil ECe. Aster tripolium, Calamagrostis epigeios, and Sonchus brachyotus revealed and then non-halophytes and common plants at inland revealed at low soil ECe of about 10 dS/m. However it was not to progress vegetation sucdession and soil desalinization at the same time, owing to input of seeds or plants ect from out-ecosystem. So for promotion of vegetation at newly reclaimed tidal land, we proposed that it was very effective to plant artificially halophytes or suitable species through soil test.

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area (서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성)

  • Son, Juwon;Shin, Hong-Ryeol;Mo, Ahra;Son, Seung-Kyu;Moon, Jai-Woon;Kim, Kyeong-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.143-156
    • /
    • 2015
  • In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.

Development of EvaGreen Based Real-time PCR Assay for Detection and Quantification Toxic Dinoflagellate Pfiesteria Piscicida and Field Applications (유독 와편모조류 Pfiesteria Piscicida 탐지 및 정량 분석을 위한 EvaGreen 기반 Real-time PCR기법 개발과 현장 적용)

  • PARK, BUM SOO;JOO, JAE-HYOUNG;KIM, MYO-KYUNG;KIM, JOO-HWAN;KIM, JIN HO;BAEK, SEUNG HO;HAN, MYUNG-SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.1
    • /
    • pp.31-44
    • /
    • 2017
  • Pfiesteria piscicida is one of heterotrophic dinoflagellate having toxic metaboliges, and it is difficult to detect and quantify this dinoflagellate via light microscope due to small size and morphological similarity with Pfiesteria-like dinoflagellate (PLD) species. Alternatively, we developed quantitative real-time PCR assay based on EvaGreen and determined field accessibility throughout the investigation of distribution in the entire Korean coastal waters and population dynamics in Shihwa Lake. The P. piscicida-specific primers based on internal transcribed spacer 1 (ITS 1) were designed and the specificity of primers was confirmed by PCR with other genomic DNAs which have genetic similarity with target species. Through real-time PCR assay, a standard curve which had a significant linear correlation between log cell number and $C_T$ value ($r^2{\geq}0.999$) and one informative melting peak ($88^{\circ}C$) were obtained. These results implies that developed real-time PCR can accurately detect and quantify P. piscicida. Throughout the field applications of real-time PCR assay, P. piscicida was distributed in western (Mokpo and Kimje) and easthern (Gangneng) Korean coastal water even though light microscopy failed to identify P. piscicida. In the investigation of population dynamics in Shihwa Lake, the density of P. piscicida was peaked in June, July and August 2007 at St. 1 where salinity (${\leq}15psu$) was lower than the other 2 sites. In this study, we successed to develop EvaGreen bassed real-time PCR for detection and quantification of P. piscicida in fields, so this developed assay will be useful for various ecological studies in the future.

Seasonal Variation of Primary Producer Phytoplankton Community in the Vicinity of the Oyster Farming Area between Tongyeong-Saryang Island (통영-사량도 굴 양식장 주변 해역에서 일차 생산자 식물플랑크톤 군집의 계절적 변화)

  • Lim, Young Kyun;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.492-500
    • /
    • 2017
  • The purpose of this study was to investigate the seasonal distribution of phytoplankton as prey for oysters and to characterize the environmental factors controlling their abundance from June 2016 to May 2017, in the northeast coast between Tongyeong and Saryang Island, particularly for the oyster farming area. During the survey period, water temperature changed from $7.54^{\circ}C$ in February to $29.5^{\circ}C$ in August. The abnormal high temperature persisted during one month in August. Salinity was low due to summer rainfall and typhoon. The lowest level was 30.68 psu in September, and it peaked at 34.24 psu in May. The dissolved oxygen (DO) concentration ranged from $6.0-9.45mg\;L^{-1}$, and the DO concentration in the surface layer was like that in the bottom layers. The seasonal trends of pH were also like those of DO. The pH ranged from 7.91 to 8.50. Nitrate with nitrite, phosphate, and silicate concentrations ranged from $0.14{\mu}M$ to $7.66{\mu}M$, from $0.01{\mu}M$ to $4.16{\mu}M$, and from $0.27{\mu}M$ to $20.33{\mu}M$, respectively. The concentration of chlorophyll a (Chl. a) ranged from $0.37{\mu}g\;L^{-1}$ to $2.44{\mu}g\;L^{-1}$ in the surface layer. The annual average concentration was $1.26{\mu}g\;L^{-1}$. The annual mean phytoplankton community comprised Bacillariophyta (69%), Dinophyta (17%), and Cryptophyta (10%), respectively. Dinoflagellate Prorocentrum donghaiense in June was the most dominant at 90%. In the summer, diatom Chaetoceros decipiens, Rhizosolenia setigera and Pseudo-nitzschia delicatissima were dominant. These species shifted to diatom Chaetoceros spp. and Crytophyta species in autumn. In the winter, high densities of Skeletonema spp. and Eucampia zodiacus were maintained. Therefore, the researchers thought that the annual mean Chl. a concentration was relatively lower to sustain oyster feeding, implying that the prey organism (i.e., phytoplankton) was greatly controlled by continuous filter feeding behavior of oyster in the vicinity area of the oyster culture farm.