• Title/Summary/Keyword: Salinity Change

Search Result 380, Processing Time 0.026 seconds

Long-term Change in Sea Level along the Eastern Coastal Waters of Korea using Tide Gauge, Water Temperature and Salinity (조위 및 수온, 염분 데이터를 이용한 동해 연안의 해수면 변화)

  • Park, Se-Young;Lee, Chung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.801-806
    • /
    • 2014
  • Long-term change in sea level along the eastern coast of Korea was illustrated using four tide-gauge station (Pohang, Mukho, Sokcho, Ulleung) data, water temperature and salinity. Seasonal variation in the sea level change was dominant. The sea level change by steric height derived from water temperature and salinity was relatively lower than that measured from the tide-gauge stations. Sea level rising rate per year by steric height increased with latitude. The effect of salinity(water temperature) on the sea level change is greater in winter(in summer).

Evaluation of Practical Application of the Remote Monitoring System for Water Salinity in Estuary Lake During Farming Season

  • Lee, Kyung-Do;Hong, Suk-Young;Kim, Yi-Hyun;Na, Sang-Il;Oh, Young-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.313-318
    • /
    • 2014
  • The remote monitoring system of water salinity was assessed in Wando reclaimed land lake during a farming season in 2009. Increasing of water salinity in this lake used to bring about salt damage on rice plant occasionally. At the early stage of the rice growing period, rice growth was not damaged due to enough rainfall with more than 120 mm from the mid-May to the first ten days of June. Data collection using on-site water salinity measuring sensors every 2 hours and real-time transmission in system were carried out for the experiment. We compared the transmitted values from the sensor system with water sample values collected and analyzed by a local technical office. Salt concentrations measured by sensor in real-time monitoring system were available data. The regression equation between rainfall and water salinity was presented as (water salinity after rainfall) = $0.621{\times}$(water salinity before rainfall)${\times}exp(-0.0139{\times}rainfall)$, ($r^2=0.579$, p<0.01). It is suggested that the system is useful for stable farming in the area where farmer use water in reclaimed lakes as an irrigation source.

Physical Oceanographic Characteristics between Hawaii and Chuuk Observed in Summer of 2006 and 2007 (2006년과 2007년 여름에 관측한 Hawaii-Chuuk 사이의 물리특성)

  • Shin, Chang-Woong;Kim, Dong-Guk;Jeon, Dong-Chull;Kim, Eung
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.371-383
    • /
    • 2011
  • To investigate the physical characteristics and variations of oceanic parameters in the tropical central North Pacific, oceanographic surveys were carried out in summer of 2006 and 2007. The survey periods were classified by Oceanic Ni$\tilde{n}$o Index as a weak El Ni$\tilde{n}$o in 2006 and a medium La Ni$\tilde{n}$a in 2007. The survey instruments were used to acquire data on CTD (Conductivity Temperature and Depth), XBT (Expendable Bathythermograph), and TSG (Thermosalinograph). The dominant temporal variation of surface temperature was diurnal. The diurnal variation in 2007, when the La Ni$\tilde{n}$a weather pattern was in place, was stronger than that in 2006. Surface salinity in 2006 was affected by a northwestward branch of North Equatorial Current, which implies that the El Ni$\tilde{n}$o affects surface properties in the North Equatorial Current region. Two salinity minimum layers existed at stations east of Chuuk in both year's observations. The climatological vertical salinity section along $180^{\circ}E$ shows that the two salinity minimum layers exist in $2^{\circ}N{\sim}12^{\circ}N$ region, consistent with our observations. Analysis of isopycnal lines over the salinity section implies that the upper salinity minimum layer is from intrusion of the upper part of North Pacific Intermediate Water into the lower part of South Pacific Subtropical Surface Water and the lower salinity minimum layer is from Antarctic Intermediate Water.

Effect of Salinity Change on Physiological Response and Growth of yearling Sea Bass, Lateolabrax japonicus (염분 변화에 따른 농어, Lateolabrax japonicus 유어의 생리 반응과 성장 차이)

  • 한형균;강덕영;전창영;장영진
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Two experiments were conducted for the physiological and growth responses of yearling sea bass, Lateolabrax japonicus (total length 24.4$\pm$1.5 cm, body weight 125.4$\pm$25.4 g) by the manipulation of salinity. To study the physiological responses of the sea bass by acute salinity change, we changed water salinity from 30 ppt into 2 ppt in rearing tank through 1 hour or 6 hour. To access the effect of salinity in the growth of sea bass, we also examined the growth of the sea bass in 2, 10, 20 and 30 ppt for 180 days. After salinity change, all yearlings appeared some stress response and ions changes in blood. The yearlings showed a slow recovery by an acute salinity exchange, but a fast recovery by slow salinity exchange. In the study about the influence of salinity in growth, although the food intake of yearlings in 20 ppt was significantly higher than the yearling in the other salinities, feed efficiency was higher in 10 ppt than the other salinities. However, the food intake and the feed efficiency in 2 ppt were significantly lower than in other groups. The growth of yearlings was significantly faster in 20 ppt than in the other salinities, but the growth showed significantly slower in 2 ppt than in the other salinities.

Effects of Gradual Change of Salinity on Physiological Response in Hybrid Striped Bass (Morone chrysops × M. saxatilis) (단계적 염분변화가 Striped bass 잡종 (Morone chrysops × M. saxatilis)의 생리적 반응에 미치는 영향)

  • Lim, Han Kyu;Han, Hyoung-Kyun;Lee, Jong Ha;Jeong, Min Hwan;Hur, Jun Wook
    • Korean Journal of Ichthyology
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • We investigated physiological responses of hybrid striped bass (Morone chrysops ${\times}$ M. saxatilis) to gradual changes of salinity from 33 psu to 0 psu and from 0 psu to 33 psu in two separate trials. Gradual salinity change was not accompanied by an increase in cortisol level in the plasma however, the glucose level in the plasma increased. $Na^{+}$, $Cl^{-}$ and osmolality significantly increased with rising salinity, but they did not change with dropping salinity. The hybrid striped bass adjusted effectively without stress to the gentle change of salinity.

Why the Mediterranean Sea Is Becoming Saltier

  • Bryden, Harry-L.;Boscolo, Roberta
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.117-124
    • /
    • 2002
  • Anthropogenic changes have been made to the water budget for the Mediterranean Sea as a result of river diversion projects. The decrease in freshwater inflow to the Mediterranean represents an effective increase in the overall net evaporation over the basin. Hydraulic control models for the exchange between the Mediterranean and Atlantic through the Strait of Gibraltar predict that the salinity of the Mediterranean should increase if the net evaporation over the Mediterranean increases. Increases in the salinity of the deep waters in both the western and eastern Mediterranean basins have been observed. The causes of such higher deep water salinity are attributed to increases in intermediate water salinity which are ultimately mixed down into the deep sea during wintertime buoyancy loss events. The pattern of the Mediterranean salinity increase is instructive for understanding how the water mass properties in a basin change over time as a result of anthropogenic changes.

The Optimum Salinity and the Effects of the Rapid Salinity Change on Oxygen Consumption and Nitrogen Excretion in River Puffer, Takifugu obscrus (급격한 염분변화에 따른 황복의 산소소비와 질소배설)

  • Lee Jeong-Yeol;Kim Deock-Bae
    • Journal of Aquaculture
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • The optimum salinity and the effects of rapid salinity change on oxygen consumption and ammonia nitrogen excretion were examined in River Puffer Takifugu obscrus (total length 9.5$\pm$0.9 cm, total weight 18.7$\pm$5.4 g). Fish examined at the different transfer medium salinity (2, 12, 22 and 32 psu) after 2 months of acclimation period at each salinities. The routine metabolic rates of River puffer are shown as parabola equation, $Y=-0.0873X^2+0.6384X-0.690$ for oxygen consumption and $Y=-2.1667X^2+7.1672X+31.999$ for ammonia nitrogen excretion with the salinity medium at 2, 12. 22 and 32 psu. The oxygen consumption and ammonia nitrogen excretion of River puffer trans-ferred to the low salinity medium (2 and 12 psu) showed significantly difference in each salinities rearing groups than to salinity of 22 and 32 psu. Fish has a diurnal rhythm in relate to feeding, it was showed that the peak of oxygen consumption appeared at 3 hours after feeding and the ammonia nitrogen excretion rate reached maximum 4 hours after feeding. These results may indicate that the optimum salinity for rearing of River puffer is 22 psu based on growth and feed conversion ratio. The rapid change of medium salinity had no effects on the oxygen consumption and nitrogen excretion in River puffer based on this experiment.

Effects of Temperature and Salinity on Survival, Metabolism and Histological Change of the Rockfish, Sebastes schlegeli (수온과 염분이 조피볼락, Sebastes schlegeli의 생존, 대사 및 조직학적 변화에 미치는 영향)

  • YANG, Sung Jin;LEE, Jeong Young;SHIN, Yun kyung;HWANG, Hyung Kyu;MYEONG, Jeong-In
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1068-1075
    • /
    • 2016
  • The suitable temperature and salinity for the long-distance transportation for the rockfish were investigated by assessing survival rate, metabolism, histological change. All experimental groups showed survival rates of 100%. Daily Oxygen consumption rhythm was decreased during nights and increased during days. Average oxygen consumption was significantly decreased as temperature and salinity were decreased. Ammonia excretion was significantly increased as temperature and salinity were decreased. Histological changes were observed in the skin and gill of the rockfish exposed to 10 psu under all the temperature conditions, with larger changes at $4^{\circ}C$. Further, nucleus deformation and uniformity in the cytoplasm were also observed.

Hourly Change of Temperature and Salinity in the Korea Strait (대한해협의 수온 및 염분의 시간적 변동)

  • Park, Chung Kil
    • 한국해양학회지
    • /
    • v.7 no.1
    • /
    • pp.15-18
    • /
    • 1972
  • The observations of hourly change of salinity and temperature were made in the Korea Strait from August 1968 to July 1969. The largest hourly change of salinity and temperature was shown in August and the smallest in April. The range of hourly change of temperature (5.67-15.75$^{\circ}C$ on the depth of 125m) and salinity (32.1-34.3 on 20m layer) were significantly wide in August. These changes are correlated with the movement of water masses vertically and horizontally caused by changing direction and force of the current.

  • PDF

A Study on the Relationship Between the Catch of Coastal Fisheries and Climate Change Elements using Spatial Panel Model (공간패널모형을 이용한 연안어업 생산량과 기후변화 요소의 관계에 대한 연구)

  • Kim, Bong-Tae;Eom, Ki-Hyuk;Lee, Joon-Soo;Park, Hye-Jin;Yook, Keun-Hyung
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.3
    • /
    • pp.63-72
    • /
    • 2015
  • This study aims to empirically analyze the relationship between climate change elements and catch amount of coastal fisheries, which is predicted to be vulnerable to climate change since its business scale is too small and fishing ground is limited. Using panel data from 1974 to 2013 by region, we tested the relationship between the sea temperature, salinity and the coastal fisheries production. A spatial panel model was applied in order to reflect the spatial dependence of the ocean. The results indicated that while the upper(0-20m) sea temperature and salinity have no significant influence on the coastal fisheries production, the lower(30-50m) sea temperature has significant positive effects on it and, by extension, on the neighboring areas's production. Therefore, with sea temperature forecast data derived from climate change scenarios, it is expected that these results can be used to assess the future vulnerability to the climate change.