• Title/Summary/Keyword: Saline agricultural land

Search Result 54, Processing Time 0.039 seconds

Economic Analysis on Desalination Technology for Saline Agricultural Land on the Basis of Crop Production (염류집적 농경지 제염기술에 대한 경제성분석 - 작물생산량을 기준으로)

  • Kim, Do-Hyung;Choi, Jeong-Hee;Kim, Lee-Yul;Nam, Chang-Mo;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.40-48
    • /
    • 2012
  • In this study, economic analysis of five desalination technologies for saline agricultural land was carried out. The analysis was comprehensively evaluated by calculating changes in crop production and benefit/cost (B/C) ratio. The analysis of crop production was in the order of tomato > cucumber > a (musk) melon > watermelon > cabbage, and economical efficiency for desalination technology was in the order of soil exchange > soil addition > electrokinetics > under-drainage > subsoil reversal. In cost benefit analysis, B/C ratio was in the order of under-drainage > soil exchange > electrokinetics > soil addition > subsoil reversal, and all desalination technologies used in this study have the ratio higher than 1, which means economical efficiency was high. Based on the net production considering B/C ratio, the general economic analysis was exactly order from that of crop production analysis. As a result, economical efficiency of soil exchange was highest, and economical efficiency of soil addition and electrokinetic was relatively higher than others.

Cost Analysis of Electrokinetic Process for Desalination of Saline Agricultural Land (염류집적 농경지 탈염을 위한 전기역학적 처리공정의 비용산출)

  • Kim, Do-Hyung;Choi, Jeong-Hee;Jo, Sung-Ung;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.91-97
    • /
    • 2012
  • In this study, cost analysis of electrokinetic (EK) restoration process for desalination of saline agricultural land was performed for field application based on a pilot scale field application. For reasonable cost analysis, EK process was classified into three major parts: system design, installation and operation. Cost of system installation consists of materials and installation for electrode/electric wire, power supply and data monitoring, drainage system, etc. Operation cost was calculated based on electrical consumption and water charges for EK process. Total cost for EK process was 2,943,013 won for $1000m^2$ in greenhouse area. Cost for system installation was 2,553,786 won, that is, 87% of total cost, while cost for system operation was 389,229 won, that is, 13% of total cost.

Intercropping of Cow Pea (Vigna unguiculata) as Summer Forage Yield with Grewia tenax in Irrigated Saline Soil of Khartoum State, Sudan

  • Abdalla, Nasre Aldin Mustafa;Alawad, Seid Ahmed Hussein;ElMukhtar, Ballal Mohamed
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.122-127
    • /
    • 2022
  • Agroforestry in terms of intercropping cow pea as summer forage with Grewia tenax was undertaken under sub -irrigation system in two consecutive seasons of 2017 and 2018 in saline soil of Khartoum State of Sudan. The aims were to find out suitable agro forestry system for saline soils as well as to investigate effect of tree spacing on field summer forage crop under semi -irrigation system. Therefore G. tenax trees that spaced at 4×4 m were used as main factor versus cow pea crop that incorporated at 25×50 cm intervals by using completely randomized block design with 3 replications. Trees and crop parameters were determined in terms of plant growth and yield. In addition to land equivalent ratio and soil chemical and physical properties at different layers were determined. The results revealed that, soil parameters in terms of CaCo3, SAR, ESP, pH paste and EC ds/m were increased with increasing soil depths. Meanwhile tree growth did not show any significant differences in the first season in 2017. Whereas in the second season in 2018 tree growth namely; tree height, tree collar and canopy diameters were higher under intercropping than in sole trees. Cow pea plant height recorded significant differences under sole crop in the first season in 2017. Unlike the forage fresh yield that was significant under the inter cropped plots. Tree fruit yield was higher under sole trees and land equivalent ratio was more advantageous under GS2 (1.5 m) which amounted to 4. Therefore it is possible to introduce this agroforestry system under saline soils to provide summer forage of highly nutritive value to feed animals and to increase farmers' income as far as to halt desertification and to sequester carbon.

Agricultural Systems for Saline Soil: The Potential Role of Livestock

  • Masters, D.G.;Norman, H.C.;Barrett-Lennard, E.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.296-300
    • /
    • 2005
  • Human-induced soil salinity is becoming a major threat to agriculture across the world. This salinisation occurs in both irrigated and rain-fed agricultural zones with the highest proportions in the arid and semi-arid environments. Livestock can play an important role in the management and rehabilitation of this land. There are a range of plants that grow in saline soils and these have been used as animal feed. In many situations, animal production has been poor as a result of low edible biomass production, low nutritive value, depressed appetite, or a reduction in efficiency of energy use. Feeding systems are proposed that maximise the feeding value of plants growing on saline land and integrate their use with other feed resources available within mixed livestock and crop farming systems. Salt-tolerant pastures, particularly the chenopod shrubs, have moderate digestible energy and high crude protein. For this reason they represent a good supplement for poor quality pastures and crop residues. The use of salt-tolerant pasture systems not only provides feed for livestock but also may act as a bio-drain to lower saline water tables and improve the soil for growth of alternative less salt tolerant plants. In the longer term there are opportunities to identify and select more appropriate plants and animals for saline agriculture.

Optimum Seeding Rate in Different to Soil Salinity for Broadcasting on the Rice Flooded Paddy Surface at South-western Reclaimed Saline Land of Korea (서남부 간척지에서 벼 담수표면산파재배시 토양 염농도별 적정 파종량)

  • Back, Nam-Hyun;Choi, Weon-Young;Ko, Jong-Cheol;Park, Hong-Kyu;Nam, Jeong-Kweon;Park, Kwang-Geun;Kim, Sang-Su;Kim, Bo-Kyeong;Kim, Choung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.47-51
    • /
    • 2006
  • This study was conducted to establish the optimum seeding rate in different soil salinity level for yield stability of broadcasting on flooded paddy surface to the reclaimed saline land of south-western part at Gyehwado substation of the Honam Agricultural Research institute in $2003{\sim}2004$. Soeganbyeo was tested in the Munpo series (fine sand loam) the results obtained is as follows: As seeding rate was higher, the number of seeding stand was increased and the number of seeding stands in the low salinity field is sharply increased than those of the medium salinity field. The length of culm in medium salinity field tends to be shorter than that of the low salinity field and as seeding rate was increased, the lodging is severe. The milled rice yield was increased as up to 9 kg/10a in low and medium salinity soil. Complete rice was no significantly increased over 5 kg/10a seeding rate in low salinity field and over 7 kg/10a seeding rate in medium salinity field. Considering the yield of milled and complete rice, seeding stand and lodging, The proper seeding rate is $5{\sim}7kg/10a$ in low salinity and $7{\sim}9kg/10a$ in medium salinity for broadcasting on flooded paddy surface at the reclaimed saline land of southwestern part.

Proper Nitrogen Fertilizer Level for Improving the Rice Quality at Reclaimed Saline Land in the Southwestern Area (서남부 간척지에서의 고품질 쌀 생산을 위한 적정 질소시비량)

  • Back Nam-Hyun;Choi Weon-Young;Ko Jong-Cheol;Nam Jeong-Kwon;Park Hong-Kyu;Choung Jin-Il;Kim Sang-Su;Park Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.46-50
    • /
    • 2005
  • This study was carried out to investigate the proper nitrogen fertilizer level at reclaimed saline land in the southwestern area of Korea from 2002 to 2004. The rice cultivars tested were Samcheonbyeo(Early maturing one), Nampyeongbyeo (Medium maturing one) and Hwaseongbyeo(Mid-late maturing one). The results aye summarized as follows: The more the nitrogen level, the more number of panicle and spikelet per unit area was. But, ripened grain rate and 1000-grain weight were decreased at higher nitrogen level. As higher nitrogen level, head rice rate was decreased and protein content was increased. But, amylose content wasn't differ among the nitrogen fertilizer application levels. As increase nitrogen level in head rice yield increased up to 12 kg/10a, 11 kg/10a, in Samcheonbyeo, Hwaseongbyeo and Nampyeongbyeo, respectively. But there wasn't different more than it. Consequently, considering the yield of head rice, ripened grain rate and rice quality. The proper nitrogen fertilizer application level was 11-12 kg/10a at reclaimed saline land in the southwestern area of Korea.