• 제목/요약/키워드: Salesman problem

검색결과 211건 처리시간 0.021초

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.

전시 최장 획득완료시간 최소화를 위한 복수 순회구매자 문제 (The Multiple Traveling Purchaser Problem for Minimizing the Maximal Acquisition Completion Time in Wartime)

  • 최명진;문우범;최진호
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.458-466
    • /
    • 2011
  • In war time, minimizing the logistics response time for supporting military operations is strongly needed. In this paper, i propose the mathematical formulation for minimizing the maximal acquisition completion time in wartime or during a state of emergency. The main structure of this formulation is based on the traveling purchaser problem (TPP), which is a generalized form of the well-known traveling salesman problem (TSP). In the case of the general TPP, an objective function is to minimize the sum of the traveling cost and the purchase cost. However, in this study, the objective function is to minimize the traveling cost only. That's why it's more important to minimize the traveling cost (time or distance) than the purchase cost in wartime or in a state of emergency. I generate a specific instance and find out the optimal solution of this instance by using ILOG OPL STUDIO (CPLEX version 11.1).

Vickrey 경매에 기초한 다중 에이전트 시스템에서의 작업 재할당 (Task Reallocation in Multi-agent Systems Based on Vickrey Auctioning)

  • 김인철
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.601-608
    • /
    • 2001
  • The automated assignment of multiple tasks to executing agents is a key problem in the area of multi-agent systems. In many domains, significant savings can be achieved by reallocating tasks among agents with different costs for handling tasks. The automation of task reallocation among self-interested agents requires that the individual agents use a common negotiation protocol that prescribes how they have to interact in order to come to an agreement on "who does what". In this paper, we introduce the multi-agent Traveling Salesman Problem(TSP) as an example of task reallocation problem, and suggest the Vickery auction as an interagent negotiation protocol for solving this problem. In general, auction-based protocols show several advantageous features: they are easily implementable, they enforce an efficient assignment process, and they guarantce an agreement even in scenarios in which the agents possess only very little domain-specific Knowledge. Furthermore Vickrey auctions have the additional advantage that each interested agent bids only once and that the dominant strategy is to bid one′s true valuation. In order to apply this market-based protocol into task reallocation among self-interested agents, we define the profit of each agent, the goal of negotiation, tasks to be traded out through auctions, the bidding strategy, and the sequence of auctions. Through several experiments with sample multi-agent TSPs, we show that the task allocation can improve monotonically at each step and then finally an optimal task allocation can be found with this protocol.

  • PDF

$A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획 (A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA)

  • 김기태;전건욱
    • 산업경영시스템학회지
    • /
    • 제34권3호
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).

신경회로망 방식에 의한 복잡한 포켓형상의 황삭경로 생성 (Neural network based tool path planning for complex pocket machining)

  • 신양수;서석환
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.32-45
    • /
    • 1995
  • In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.

  • PDF

혼합정수 선형계획법과 유전 알고리듬을 이용한 다수 무인항공기 임무할당 (Task Assignment of Multiple UAVs using MILP and GA)

  • 최현진;서중보;김유단
    • 한국항공우주학회지
    • /
    • 제38권5호
    • /
    • pp.427-436
    • /
    • 2010
  • 본 논문은 다수의 목표물과 다수의 임무가 존재하는 상황에서의 다수 무인항공기의 임무할당 문제를 다룬다. 다수 무인항공기의 임무할당 문제는 순회 세일즈맨 문제, 차량 라우팅 문제와 같은 조합최적화 문제의 일종으로 NP-hard의 계산 복잡도를 가지고 있다. 이런 성격의 문제는 문제의 크기가 커질수록 계산시간이 급격히 증가하는 특징을 지니기 때문에 문제를 효율적으로 풀기 위해서 근사화 방법 또는 발견적인 방법을 사용한다. 본 연구에서는 임무할당 문제를 혼합정수 선형계획 문제로 정식화하고, 혼합정수 선형계획법과 유전 알고리듬으로 해를 구하였다. 다수의 목표물, 다수의 임무, 장애물이 존재하는 환경에 대한 수치 시뮬레이션을 수행하여 각 방법의 최적성과 효율성에 대해 검토하였다.

한정 용량 차량 경로 탐색 문제에서 이분 시드 검출 법에 의한 발견적 해법 (The Bisection Seed Detection Heuristic for Solving the Capacitated Vehicle Routing Problem)

  • 고준택;유영훈;조근식
    • 지능정보연구
    • /
    • 제15권1호
    • /
    • pp.1-14
    • /
    • 2009
  • 본 연구에서는 한정 용량 차량 경로탐색 문제(CVRP, Capacitated Vehicle Routing Problem)에서 이분 시드 검출 방법(Bisection Seed Detection)을 이용한 휴리스틱 알고리즘을 제안하였다. 이 알고리즘은 3단계로 구성된다. 1단계에서는 improved sweep 알고리즘을 이용해서 초기 클러스터를 구성한다. 2단계에서는 1단계에서 얻은 각 클러스터에 대하여 이분 시드 검출 법을 이용해서 seed 노드를 선택하고, regret 값에 따라 각 경로에 고객 노드들을 삽입 함으로서 차량 이동 경로를 생성한다. 3단계에서는 tabu 탐색 방법과 노드 교환 알고리즘(node exchange algorithm)을 이용하여 2단계에서 얻어진 각 경로를 더욱 향상 시킨다. 본 논문의 실험에서는 제안된 휴리스틱이 비교적 빠른 시간 내에 최적 근사 값을 얻을 수 있음을 보였으며, 이는 빠른 실행 시간을 요구하는 실 업무에 유용하다.

  • PDF

집단간 긍정적.부정적 상호작용을 이용한 다중 집단 개미 모델 (Multi Colony Ant Model using Positive.Negative Interaction between Colonies)

  • 이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.751-756
    • /
    • 2003
  • 개미 집단 최적화는 최근에 제안된 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법으로, 그리디 탐색뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문에서는 기존의 개미 집단 시스템의 성능을 향상시키기 위해 강화와 다양화를 통한 집단간 긍정적 상호작용과 부정적 상호작용을 수행하는 다중 집단 개미 모델을 제안한다. 이 알고리즘은 TSP 문제를 해결하기 위해 몇 개의 에이전트 집단으로 이루어진 ACS 집단간의 상호작용을 통해 문제를 해결하는 방법이다. 본 논문에서는 이 제안된 방법을 TSP 문제에 적용해 보고 그 성능에 대해 기존의 ACS 방법과 비교 평가해, 문제 해결의 질적 수준이 우수하다는 것을 실험을 통해 알아보고자 한다.

멀티캐스트 라우팅 문제 해결을 위한 엘리트 개미 시스템 (Elite Ant System for Solving Multicast Routing Problem)

  • 이승관
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권3호
    • /
    • pp.147-152
    • /
    • 2008
  • 개미 시스템(Ant System)은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법으로, 그리디 탐색뿐만 아니라 긍정적 피드백을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문에서는 이러한 개미 시스템을 이용한 멀티캐스트 라우팅 방법을 제안한다. 멀티캐스트 라우팅은 하나의 송신자에서 다수의 수신자로 데이터를 전송하는 것으로 스타이너 트리(Steiner Tree)를 구성해 문제를 해결할 수 있다. 하지만, 멀티캐스트 라우팅 문제는 모든 노드를 방문하는 순회 판매원 문제와 접근법이 다르므로, 순회 판매원 문제를 해결하기 위한 개미 시스템의 전략을 수정한 엘리트 에이전트에 의한 개미 멀티캐스트 라우팅 모델을 제안한다. 이 모델은 이웃노드를 선택할 경우 해당 에지와 선택될 다음노드의 전체 비용까지 모두 고려해 이웃노드를 선택한다. 또한, 엘리트 에이전트에 의해 선택된 에지에 대해서는 추가 페로몬 갱신을 수행한다. 이러한 전략을 통해 제안한 모델의 성능을 평가한다.

  • PDF

이웃 해 전략 전환 메커니즘을 이용한 반응적 타부 탐색 (Reactive Tabu Search using Neighborhood Strategy Switching Mechanism)

  • 김재호;이희상;한현구
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권7호
    • /
    • pp.467-477
    • /
    • 2001
  • 반응적 타부 탐색은 단순한 타부 탐색과 비교해서 중장기 메모리를 이용한 학습을 통하여 타부리스트의 크기를 반응적으로 변화시킴으로써 NP-hard 문제에 속하는 다양한 조합 최적해 문제에 대해서 좋은 해를 효율적으로 찾는다. 본 논문에서는 반응적 타부 탐색에 있어서 중장기 메모리를 이용한 탈출 메커니즘으로 이웃 해 전략 전환 메커니즘이라는 개념을 제시한다. 제시된 이웃 해 전략 전환 메커니즘을 이용한 반응적 타부 탐색을 특정 공과 대학의 강의 시간표 작성 문제와 외판원문제 (traveling salesman problem)에 적용하여 기존의 반응적 타부 탐색과 비교 분석을 하였다. 전산 실험 결과 제시된 알고리즘은 기존의 반응적 타부 탐색 알고리즘에 비교하여 더 좋은 해를 더 짧은 시간에 찾아주었다.

  • PDF