• Title/Summary/Keyword: Sagittal balance

Search Result 45, Processing Time 0.021 seconds

Meridian Sinews and Sagittal Spinal Balance (경근(經筋)과 인체 시상균형에 관한 소고(小考))

  • Nam, Tong-Hyun;Shin, Sang-Hun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.13 no.2
    • /
    • pp.129-139
    • /
    • 2009
  • Sagittal spinal balance means standing postural balance at sagittal plane. Postural imbalance with displacement of the patient's center of gravity can cause chronic back pain and ambulatory difficulty. The sagittal spinal balance is determined based on the deviation of the C7 plumb line, originating at the middle of the C7 vertebral body, from the posterior superior endplate of S1. The line is called as sagittal vertical axis (SVA). In the traditional Korean medicine, the meridian sinews, which are the most superficial pathways of the meridian system, associated with movement, muscle balance and defense. They too are separate from the main meridians, though they intersect the main meridians. Some creative and pioneer researchers in Korea thought that the anatomy trains, which suggested by Myers is a concept familiar to the meridian sinews. A reciprocal relationship between the superficial back line and the superficial front line used to be compared to the rigging of a sailboat. Therefore, We suggest that spine may be compared to a mast of the sailboat and that the sagittal spinal balance can be maintained with systemic reciprocal interacts between the front line muscles and the back.

  • PDF

Restoration of Sagittal Balance in Spinal Deformity Surgery

  • Makhni, Melvin C.;Shillingford, Jamal N.;Laratta, Joseph L.;Hyun, Seung-Jae;Kim, Yongjung J.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.2
    • /
    • pp.167-179
    • /
    • 2018
  • The prevalence of patients with adult spinal deformity (ASD) has been reported as high as 68%. ASD often leads to significant pain and disability. Recent emphasis has been placed on sagittal plane balance and restoring normal sagittal alignment with regards to the three dimensional deformity of ASD. Optimal sagittal alignment has been known to increase spinal biomechanical efficiency, reduce energy expenditure by maintaining a stable posture with improved load absorption, influence better bony union, and help to decelerate adjacent segment deterioration. Increasingly positive sagittal imbalance has been shown to correlate with poor functional outcome and poor self-image along with poor psychological function. Compensatory mechanisms attempt to maintain sagittal balance through pelvic rotation, alterations in lumbar lordosis as well as knee and ankle flexion at the cost of increased energy expenditure. Restoring normal spinopelvic alignment is paramount to the treatment of complex spinal deformity with sagittal imbalance. Posterior osteotomies including posterior column osteotomies, pedicle subtraction osteotomies, and posterior vertebral column resection, as well anterior column support are well known to improve sagittal alignment. Understanding of whole spinal alignment and dynamics of spinopelvic alignment is essential to restore sagittal balance while minimizing the risk of developing sagittal decompensation after surgical intervention.

Evaluation of Global Sagittal Balance in Koreans Adults

  • Cho, Yongjae
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.560-566
    • /
    • 2017
  • Objectvie : The global sagittal postural patterns as characterized by Roussouly classification have been previously described in various ethnicities, there were no studies investigated in Koreans. To analyze the distribution of the global sagittal postural patterns in Korean adults using Roussouly classification, the author prospectively studied. Methods : 252 asymptomatic Korean adults was recruited. Data was obtained by reviewing the films for each subject. Spinopelvic parameters were measured and sagittal postural patterns were then determined according to Roussouly classification. We compared the data across different ethnicities from our study and a previous study to further characterize Korean sagittal postures. Results : The subject included 151 males and 101 females, with mean age of $33.2{\pm}8.2years$. The average descriptive results were as below : thoracic kyphosis $28.6{\pm}7.7^{\circ}$, lumbar lordosis $48.3{\pm}10.2^{\circ}$, sacral slope $37.8{\pm}5.8^{\circ}$, pelvic incidence $45.1{\pm}7.5^{\circ}$, pelvic tilt $9.4{\pm}6.7^{\circ}$, spinosacral angle $130.1{\pm}5.4^{\circ}$, and sagittal vertical axis $16.25{\pm}22.5mm$. 125 subjects among 252 (49.6%) belonged to Roussouly type 3 (namely neutral). There were also 58 (23%), 33 (13.1%), and 36 (14.3) subjects in type 1, 2, and 4 (namely non-neutral), respectively. Conclusion : Enrolling 252 asymptomatic Korean adults, this prospective study found that 49.6% of asymptomatic Korean adults possessed a sagittal posture of Roussouly type 3. All radiologic parameters follows general concept of spinal sagittal balance pattern. Overall, this study might be a basis for further investigation of spinal sagittal balance.

A Surgical Option for Multilevel Anterior Lumbar Interbody Fusion with Ponte Osteotomy to Achieve Optimal Lumbar Lordosis and Sagittal Balance

  • Suh, Loo-Ree;Jo, Dae-Jean;Kim, Sung-Min;Lim, Young-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • Objective : To document lumbar lordosis (LL) of the spine and its change during surgeries with the different height but the same angle setting of the anterior cage. Additionally, we attempted to determine if sufficient LL is achieved at different cage heights and to quantify the change in LL during multi-level anterior lumbar interbody fusion (ALIF). Methods : The medical records and radiographs of 42 patients who underwent more than 2 level ALIFs between 2008 and 2009 were retrospectively reviewed. We evaluated 3 parameters seen on lateral whole spine radiographs : LL, pelvic incidence (PI), and sagittal vertical axis (SVA). The mean follow-up time was 28.1 months and the final follow-up radiographs of all patients were reviewed at least 2 years after surgery. Statistical analysis was performed using the paired t-tests. Results : Lumbar lordosis had changed up to 30 degrees immediately and 2 years after surgery (preoperative mean LL, SVA : 22.45 degrees, 112.31 mm; immediate postoperative mean LL, SVA : 54.45 degrees, 37.36 mm; final follow-up mean LL, SVA : 49.56 degrees, 26.95 mm). Our goal of LL is to obtain as much PI as possible, preoperative mean PI value was $55.38{\pm}3.35$. The pre-operative and two year post-surgery follow-up mean of the Japanese Orthopedic Association score were $9.2{\pm}0.6$ and $13.2{\pm}0.6$ (favorable outcome rate : 95%), respectively. In addition, we were able to obtain good clinical outcomes and sagittal balance with a subsidence rate of 22.7%. Conclusion : We were able to achieve sufficient LL, such that it was similar to the PI, utilizing multi-level ALIF with the use of a tall cage with the same angle setting of the cage. We have found out that achieving sufficient lumbar lordosis and sagittal balance require an anterior lumbar cage with high angle and height.

'Lumbar Degenerative Kyphosis' Is Not Byword for Degenerative Sagittal Imbalance : Time to Replace a Misconception

  • Lee, Chang-Hyun;Chung, Chun Kee;Jang, Jee-Soo;Kim, Sung-Min;Chin, Dong-Kyu;Lee, Jung-Kil;Korean Spinal Deformity Research Society
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.125-129
    • /
    • 2017
  • Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name "primary degenerative sagittal imbalance" (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK.

Comparison of the Effects of Magnetically Controlled Growing Rod and Tradiotinal Growing Rod Techniques on the Sagittal Plane in the Treatment of Early-Onset Scoliosis

  • Erdogan, Sinan;Polat, Baris;Atici, Yunus;Ozyalvac, Osman Nuri;Ozturk, Cagatay
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.577-585
    • /
    • 2019
  • Objective : Comparing the effects of magnetically controlled growing rod (MCGR) and traditional growing rod (TGR) techniques on the sagittal plane in the treatment of early-onset scoliosis (EOS). Methods : Twelve patients were operated using dual MCGR technique in one center, while 15 patients were operated using dual TGR technique for EOS in another center. Patients' demographic characteristics, complications and radiological measurements such as cobb angle, thoracic kyphosis, lumbar lordosis, T1-S1 range (mm), proximal junctional angle, distal junctional angle, sagittal balance, coronal balance, pelvic incidence, sacral slope and pelvic tilt were assessed and compared in preoperative, postoperative and last follow-up period. Results : Age and sex distributions were similar in both groups. The mean number of lengthening in the MCGR group was 12 (8-15) and 4.8 (3-7) in the TGR group. Two techniques were shown to be effective in controlling the curvature and in the increase of T1-S1 distance. In TGR group, four patients had rod fractures, six patients had screw pull-out and four patients had an infection, whereas three patients had screw pull-out and one patient had infection complications in the MCGR group. Conclusion : There was no significant difference between the two groups in terms of cobb angle, coronal and sagittal balance and sagittal pelvic parameters. MCGR can cause hypokyphosis and proximal junctional kyphosis in a minimum 2-year follow-up period. The implant-related complications were less in the MCGR group. However, larger case groups and longer follow-up periods are required for the better understanding of the superiority of one method on other in terms of complications.

Sagittal Sacropelvic Morphology and Balance in Patients with Sacroiliac Joint Pain Following Lumbar Fusion Surgery

  • Cho, Dong-Young;Shin, Myung-Hoon;Hur, Jung-Woo;Ryu, Kyeong-Sik;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.3
    • /
    • pp.201-206
    • /
    • 2013
  • Objective : To investigate the sagittal sacropelvic morphology and balance of the patients with SIJ pain following lumbar fusion. Methods : Among 452 patients who underwent posterior lumbar interbody fusion between June 2009 and January 2013, patients with postoperative SIJ pain, being responded to SIJ block were enrolled. For a control group, patients matched for sex, age group, the number of fused level and fusion to sacrum were randomly selected. Patients were assessed radiologic parameters including lumbar lordosis, pelvic incidence (PI), pelvic tilt (PT) and sacral slope (SS). To evaluate the sagittal sacropelvic morphology and balance, the ratio of PT/PI, SS/PI and PT/SS were analyzed. Results : A total of 28 patients with SIJ pain and 56 patients without SIJ pain were assessed. Postoperatively, SIJ pain group showed significantly greater PT (p=0.02) than non-SIJ pain group. Postoperatively, PT/PI and SS/PI in SIJ pain group was significantly greater and smaller than those in non-SIJ pain group respectively (p=0.03, 0.02, respectively) except for PT/SS (p=0.05). SIJ pain group did not show significant postoperative changes of PT/PI and SS/PI (p=0.09 and 0.08, respectively) while non-SIJ pain group showed significantly decrease of PT/PI (p=0.00) and increase of SS/PI (p=0.00). Conclusion : This study presents different sagittal sacropelvic morphology and balance between the patients with/without SIJ pain following lumbar fusion surgery. The patients with SIJ pain showed retroversed pelvis and vertical sacrum while the patients without SIJ pain have similar morphologic features with asymptomatic populations in the literature.

Comparison Kinematic Patterns between the Star Excursion Balance Test and Y-Balance Test in Elite Athletes

  • Ko, Jupil
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.165-169
    • /
    • 2017
  • Objective: The Star Excursion Balance Test (SEBT) and Y-Balance Test (YBT) have been commonly applied to measure dynamic postural stability ability. These two tests are utilized interchangeably in various settings. However, they could in fact require different movements to assess dynamic postural stability, as one uses a platform and different measuring techniques than the other. The purpose of this study was to determine if there was a significant difference in the kinematic patterns in physically active population while performing the SEBT and the YBT. Method: Seventy participants performed in the Anterior (AN), Posteromedial (PM), and Posterolateral (PL) directions of the SEBT and the YBT. The kinematics of hip, knee, and ankle in sagittal plane was calculated and analyzed. Paired-sample t-tests were performed to compare joint angular displacement in the ankle, knee, and hip between the SEBT and the YBT. Results: Significant differences in angular displacement at the hip, knee, and ankle joints in the sagittal plane between performance on the SEBT and on the YBT were observed. Conclusion: Clinicians and researchers should not apply these dynamic postural control tasks interchangeably from one task to another. There appear to be kinematic pattern differences between tests in healthy physical active population.

The Sagittal Balance of Cervical Spine : Comprehensive Review of Recent Update

  • Sang Hoon Lee;Tae Hwan Kim;Seok Woo Kim;Hyun Take Rim;Heui Seung Lee;Ji Hee Kim;In Bok Chang;Joon Ho Song;Yong Kil Hong;Jae Keun Oh
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.611-617
    • /
    • 2023
  • The cervical spine plays a critical role in supporting the skull, maintaining horizontal gaze, and facilitating walking. Its unique characteristics, including the widest range of motion among spinal segments, have led to extensive research on cervical sagittal alignment. Various parameters have been proposed to evaluate cervical alignment, with studies investigating their clinical significance, correlation with symptoms, and implications for surgical interventions. Recent findings suggest that cervical sagittal alignment not only impacts the cervical spine but also influences global spine-pelvic alignment through compensatory mechanisms. This comprehensive review examines classical and new parameters of cervical sagittal alignment and considers the dynamic and muscular factors associated with it.

The Change of Adjacent Segment and Sagittal Balance after Thoracolumbar Spine Surgery

  • Kim, Kang-San;Hwang, Hyung-Sik;Jeong, Je-Hoon;Moon, Seung-Myung;Choi, Sun-Kil;Kim, Sung-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.5
    • /
    • pp.437-442
    • /
    • 2009
  • Objective : To characterize perioperative biomechanical changes after thoracic spine surgery. Methods : Fifty-eight patients underwent spinal instrumented fusions and simple laminectomies on the thoracolumbar spine from April 2003 to October 2008. Patients were allocated to three groups; namely, the laminectomy without fusion group (group I, n = 17), the thoracolumbar fusion group (group II, n = 27), and the thoracic spine fusion group (group III, n = 14). Sagittal (ADS) and coronal (ADC) angles for adjacent segments were measured from two disc spaces above lesions at the upper margins, to two disc spaces below lesions at the lower margins. Sagittal (TLS) and coronal (TLC) angles of the thoracolumbar junction were measured from the lower margin of the 11th thoracic vertebra body to the upper margin of the 2nd lumbar vertebra body on plane radiographs. Adjacent segment disc heights and disc signal changes were determined using simple spinal examinations and by magnetic resonance imaging. Clinical outcome indices were determined using a visual analog scale. Results : The three groups demonstrated statistically significant differences in terms of angle changes by ANOVA (p<0.05). All angles in group I showed significantly smaller angles changes than in groups II and III by Turkey's multiple comparison analysis. Coronal Cobb's angles of the thoracolumbar spine (TLC) were not significantly different in the three groups. Conclusion : Postoperative sagittal balance is expected to change in the adjacent and thoracolumbar areas after thoracic spine fusion. However, its prevalence seems to be higher when the thoracolumbar spine is included in instrumented fusion.