• Title/Summary/Keyword: Sag Duration

Search Result 33, Processing Time 0.029 seconds

A Study on the Harmonics and Voltage Sags Effect by the Series Resonant Filter Application for Personal Computer Loads (컴퓨터 부하의 직렬 동조 필터 적용에 의한 고조파 및 순간전압강하 영향에 관한 연구)

  • Seo, Beom-Gwan;Kim, Kyoung-Chul;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.460-461
    • /
    • 2006
  • Computer Loads can be found in all of modern society. The switching mode power supplies used in personal computers are major sources of harmonic currents. Harmonic currents can cause lots of harmonic problems such as disruption in computer performance. A series resonant filter is very effective in harmonic reduction for personal computer loads. Voltage sags are short duration reductions in rms voltage. The main causes of voltage sags are faults, motor starting, and transformer energizing. Personal computers are another example of devices sensitive to voltage sags. A serious voltage sag at the terminals way lead mis-operation of the equipment. This paper presents an in depth analysis to evaluate the effect of harmonics reduction based on the IEC 61000-3-2 and the effect of voltage sag using ITI curve by applying a series resonant filter for personal computer loads.

  • PDF

A Study on Operation Scheme of STS with Emergency Generator for Peak Shedding (첨두부하 저감을 위한 비상발전기 연계형 STS 운영 방안에 관한 연구)

  • Kim, Chang-Hwan;Rhee, Sang-Bong;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.155-156
    • /
    • 2015
  • Recently, electricity consumption has rapidly increased along with economic growth. The operating strategy using emergency generator is aimed, to resolve a demand response management. For strategy of peak shedding using emergency generator, it is essential to introduce the fast transfer switching device. One of the most effective solutions is to use a static transfer switch (STS) based on thyristor. However, the characteristic of natural commutated SCR thyristor should anticipate short duration voltage sag. STS system thus requires more than a quarter cycle to successfully complete transfer process. This paper proposes the operation scheme of the STS system using the forced-commutation technique to mitigate instantaneous voltage sag during peak transfer process. Proposed STS system improved turn-off characteristic thus accomplishes the peak load shedding satisfied power quality. Performance of the proposed STS system is evaluated using electromagnetic transient program (EMTP) to confirm the effectiveness.

  • PDF

Development of High-Performance Single-Phase Line-Interactive Dynamic Voltage Restorer (고성능 단상 선로응동형 DVR(Dynamic Voltage Restorer))

  • Bae, Byung-Yeol;Lee, Dong-Geun;Kwak, No-Hong;Park, Sang-Ho;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1947-1954
    • /
    • 2007
  • This paper describes the development of a high-performance single-phase line-interactive Dynamic voltage Restorer, which is composed of an H-bridge inverter and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with 3kVA prototype. The developed system can compensates the input voltage sag and interruption within 2ms, in which the maximum allowable duration of voltage interruption is 1.5 seconds. It can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication equipment, automation equipment, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components and to be highly reliable in operation.

Development of Three-Phase Line-Interactive Dynamic Voltage Restorer with Hybrid Detection Method (Hybrid 검출방식을 적용한 삼상 선로 응동형 DVR(Dynamic Voltage Restorer) 개발)

  • Jeong, Jong-Kyou;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1954-1961
    • /
    • 2009
  • This paper describes the development of a three-phase line-interactive dynamic voltage restorer with hybrid detection method, which is composed of three H-bridge inverter modules and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with a 3kVA prototype. The developed system can compensate the input voltage sag and interruption within 2ms. The maximum allowable duration of voltage interruption is about 4 seconds. The developed system can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication devices, and automation devices, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components, and to be highly reliable in operation.

Dynamic Voltage Compensator for Voltage Sag (순간전압강하에 대한 동적전압보상기)

  • Han, Byung-Moon;Han, Kyung-Hee;Bae, Joung-Hwan;Kim, Hee-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2047-2049
    • /
    • 1997
  • Computers and automatic equipment are very sensitive to the disturbances such as voltage transients, voltage sag, and harmonics. These disturbances cause them to have a malfunction or fault which brings about damages and losses. UPS (uninterruptible power supply) and SPS(stand-by power supply) have been used to provide the required voltage in a critical load without disturbances. However, UPS has appreciable losses due to the operation of the inverter in full rated power at all times. SPS, although whose inverter losses are smaller than those of UPS, transfers disturbances with a short duration to the load, due to the limited reaction time. In this research, a dynamic voltage compensator, which can make up for the weakness of UPS and SPS, is proposed. The operation of the proposed system was verified by a computer simulation. A hardware scaled-model was fabricated and tested to conform the feasibility of the actual system development.

  • PDF

Development of 3kVA Line-interactive DVR(Dynamic Voltage Restorer) (3kVA급 선로응동형 동적전압보상기 개발)

  • Bae, Byung-Yeol;Lee, Dong-Geun;Yun, Dong-Jin;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.147-150
    • /
    • 2007
  • This paper describes the development of a high-performance single-phase line-interactive Dynamic voltage Restorer, which is composed of an H-bridge inverter and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with 3kVA prototype. The developed system can compensates the input voltage sag and interruption within 2ms, in which the maximum allowable duration of voltage interruption is 1.5 seconds. The developed system has a simple structure to be easily implemented with commercially available components and to be highly reliable in operation.

  • PDF

Investigation of the Impact of Voltage Sags and Temporary Interruptions on 3-Phase Induction Motors (배전계통 순간전압강하 및 순간정전이 3상 유도전동기에 미치는 영향 검토)

  • Kang, Bong-Seok;Kim, Jae-Chul;Moon, Jong-Fil;Yun, Sang-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.106-109
    • /
    • 2003
  • This paper describes the various characteristics of voltage sags and temporary interruptions which can affect the functions of 3-phase induction motors. These assorted characteristics include motor speed loss, voltage recovery, motor reacceleration, and transient characteristics. An experimental study on induction motor behavior was also carried out to confirm these impacts. Besides, sequential voltage sags of short duration were considered for this paper. The results show that the occurrence of the second voltage sag after the first one may affects the induction motor adversely.

  • PDF

Development of Single-Phase DVR(Dynamic Voltage Restorer) Composed of H-Bridge Inverter and SuperCapacitor (H-브리지 인버터와 수퍼커패시터로 구성된 단상 DVR(Dynamic Voltage Restorer)의 개발)

  • Lee, Dong-Geun;Lee, Doo-Young;Yang, Seung-Chul;Bae, Byung-Yeol;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.160-161
    • /
    • 2007
  • This paper describes the development of a single-phase DVR(Dynamic voltage Restorer), which is composed of H-bridge inverter and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with 3kVA prototype. The developed system can compensates the input voltage sag and interruption within 2ms, in which the maximum allowable duration of voltage interruption is 1.5 seconds. It can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication equipment, automation equipment, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components and to be highly reliable in operation.

  • PDF

A Study on the Harmonics and Voltage Sags Effect by the Series Resonant Filter Application for Personal Computer Loads (개인용 컴퓨터 부하의 직렬동조필터 적용에 의한 고조파 및 순간전압강하 영향에 관한 연구)

  • Seo, Beom-Gwan;Kim, Kyung-Chul;Lee, Il-Moo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.36-41
    • /
    • 2006
  • Computer Loads can be found in all of modern society. The switching mode power supplies used in personal computers are major sources of harmonic currents. Harmonic currents can cause lots of harmonic problems such as disruption in computer performance. A series resonant filter is very effective in harmonic reduction for personal computer loads. Voltage sags are short duration reductions in rms voltage. The main causes of voltage sags at faults, motor starting, and transformer energizing. Personal computers are another example of devices sensitive to voltage sags. A serious voltage sag at the terminals way lead mis-operation of the equipment. This paper presents an in depth analysis to evaluate the effect of harmonics reduction based on the IEC 61000-3-2 and the effect of voltage sag using ITI curve by applying a series resonant filter for personal computer loads.

Evaluation of Reliability Worth Considering Sustained Interruptions and Voltage Sags (영구정전과 순간전압강하를 고려한 신뢰도 비용 평가)

  • Lee, Hee-Tae;Moon, Jong-Fil;Seol, Kyu-Hwan;Yun, Sang-Yun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.13-20
    • /
    • 2008
  • Power quality problems such as momentary interruptions and voltage sags do not great influence on loads at past. However, the interests in power quality problems increase as the use of sensitive loads with microprocessor like computers increases recently. Accordingly, power system reliability research focusing to sustained interruption and momentary interruption partially needs more accurate evaluation methods including momentary and instantaneous problems. That is, many sensitive loads being tripped by voltage sags result in interruption costs. In this paper, new reliability worth evaluation method is presented considering voltage sags. We calculated the magnitude of voltage sags using fault studies and the duration of voltage sags using the trip time of protective relays for each fault. Moreover, we includes the customer interruption cost resulted from sensitive load trip by voltage sags. Through case studies, we evaluate the effects of voltage sags for permanent faults.