• 제목/요약/키워드: Safety wheel

검색결과 444건 처리시간 0.028초

철도 차륜의 구름접촉 피로 균열에 관한 유한요소해석 (FEM Analysis on Rolling Contact Fatigue Crack of a Railway Wheel)

  • 김호경;양경탁;김현준
    • 한국안전학회지
    • /
    • 제22권2호
    • /
    • pp.8-14
    • /
    • 2007
  • In this study, tensile and fatigue crack propagation tests machined from actual wheels were performed. FEM analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors K I and K II at the crack tip under the stress($P_{max}=911.5MPa$) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one. It is found that in the wheel fatigue crack, parallel to the wheel tread surface, the crack with its length 2a = 2.4mm starts to propagate due to the fact that the effective stress intensity factor access to the threshold stress intensity factor($K_{th}=16.04MPa{\sqrt{m}}$) of the wheel.

적응제어 기법을 적용한 ABS의 바퀴 슬립 제어 (Wheel Slip Control of ABS Using Adaptive Control Method)

  • 최종환
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.71-79
    • /
    • 2006
  • ABS is a safety device for preventing wheel locking in a sudden baking. Its control methods are classified into three types; deceleration control, wheel slip control and deceleration/acceleration control. The braking force takes the influence of the friction coefficient between road and tire, which in turn depends on the wheel slip as well as road conditions. In this paper, it has been proposed the wheel slip control system to apply the adaptive control method at the ABS. To maintain wheel slip to desired wheel slip, it have been done the linearization and designed the adaptive controller to apply gradient method based on the reference model. It is illustrated by computer simulations that the proposed control system gives good performances and adaptation to parameter variation.

  • PDF

철도차량 차륜의 잔류응력 평가 (Evaluation of Residual Stress of railway wheel)

  • 서정원;구병춘;이동형;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.208-213
    • /
    • 2002
  • Railway wheel and axle are the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluation of wheelset strength and safety has been desired. Damages of railway wheel are a spatting by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact and thermal stress from heat induced in braking. The objective of this paper is to estimate the variation and magnitude of the residual stress of railway wheel.

  • PDF

탈선 매커니즘 해명을 위한 차륜/레일 접촉위치 측정 (Measurement of contact position between wheel and rail for clarification of derailment mechanism)

  • 함영삼;홍재성;이관섭;서병욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.608-612
    • /
    • 2004
  • Safety from derailment has been evaluated according to the magnitude of the derailment coefficient, which does not always ensure sufficient safety evaluation, and is not necessarily helpful in clarifying the mechanism of derailment. When wheel rolls, point of contact between wheel and rail was change continuously and flange touches with rail. Established gauge so that can measure location of contact point between wheel and rail by strain gauge. Also, wish to describe result that compose bridge circuit and execute load test.

  • PDF

기존선 궤도의 충격계수 산정에 관한 연구 (Evaluation of Track Impact Factor in the Conventional Line)

  • 엄주환;유영화;엄기영
    • 한국철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.239-245
    • /
    • 2003
  • In this paper, the track impact factor of conventional line was evaluated using the data for wheel load measured in field and the properties of current operating trains. The equation for track impact factor was presented through the statistical analysis of variational ratio in wheel load and compared with other design equations in domestic and foreign countries. A review on the safety of track system in conventional line was made from the relationship between the velocity and the corresponding impact factor. It was found that the impact factor from the proposed equation is a little less than the values from the equations adopted in both AREA and domestic railway, while it is same as the equation for continuous welded rail(CWR) in Japan. Therefore it could be said that the track satisfies a criteria for dynamic load caused by the train and the corresponding level of safety is guaranteed for dynamic load of the train

차륜 답면형상에 따른 KTX의 동특성 검토 (Dynamic Characteristics of the KTX on Wheel Conicity)

  • 장종기;이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.22-27
    • /
    • 2003
  • The running safety of the rolling stock depends on the design characteristics and the contact condition between wheel and railway. In this study, the effect of the conicity of wheel tread on the running safety is analyzed. The modal analysis results in $0.5\~0.6Hz$ natural frequency with lateral modes. However, the frequency analysis for the running simulation shows the frequency components near 1Hz. The running simulation shows that the KTX with GV40 wheel has less lateral vibration than that of XP55 as the KTX goes higher speed.

  • PDF

틸팅차량의 기존선 곡선부 주행안정성 평가 (Evaluation of Running Stability of Tilting Trains in Conventional Curved Track)

  • 엄기영;엄주환;유영화;최정호
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.367-373
    • /
    • 2004
  • The investigation of running stability of the train for curved track is necessary in view of preventing the train from derailment caused by unbalanced forces transferred from the wheel and guaranteeing moderate level of running safety in curve sections. This paper carried out an analysis of running stability of tilting trains in conventional line which the test operation of tilting trains under development are scheduled. For this purpose, the wheel load and lateral pressure to the rail are evaluated. The criteria for the calculated wheel load and derailment coefficient are compared to the design criteria for running stability. It is founded that the running stability of tilting trains for curved track is guaranteed to have sufficient safety and the train speed in curve is governed by the geometric layout of track rather than the criteria for running stability.

충돌모의(Sled) 시험에 의한 특별교통수단 휠체어 탑승자 상해에 관한 연구 (A Study on Wheelchair Occupant Injury in Wheelchair Accessible Vehicle by the Sled Test)

  • 김태용;심소정;김시우;강병도
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.140-148
    • /
    • 2017
  • Accidents involving wheelchair accessible vehicles have been frequently occurring since the introduction of these vehicles in the Korean market. However, detailed regulations, which are required to ensure the safety of the wheel-chair occupants, are unavailable. In this study, both domestic and international vehicle safety regulations are analyzed in order to select the regulations that are similar to the transportation environment of Korea. Sled tests with an actual wheel-chair accessible vehicle were carried out based on the analyzed regulation requirements, as well as the values of the HIC, belt loads, dummy movements, and wheelchair movements. The test results showed that the movements of the dummy and the wheelchair did not meet the criteria of the regulation due to the improper positioning of the restraint systems.

컨테이너 철도차륜의 안전성 평가에 관한 연구 (A Study on Safety Estimation of Railroad Wheel)

  • 이동우;김진남;조석수
    • 한국산학기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.1178-1185
    • /
    • 2010
  • 철도차량의 고속화가 가속화되면서 화물을 운송하던 컨테이너 차량이 차륜의 파손에 의하여 탈선하는 사고가 발생하여 많은 물적 피해가 발생하고 있으며, 이러한 철도차량의 사고는 많은 인명 피해와 물적 피해를 가져오는 대형 사고로 발전할 수 있다. 따라서 이에 대한 재발 방지를 위한 차륜의 파손 해석에 대한 연구가 필요한 실정이다. 철도차량의 차륜은 기계적 하중과 열하중를 동시에 받으며, 기계적 하중으로는 철도차량의 무게에 의한 수직하중과 곡선 구간을 운행할 때 차륜과 레일의 접촉부에 수평하중이 발생하며, 철도차량의 제동시 답면제동에 의한 반복적인 열하중을 받는다. 이러한 차륜에 발생하는 기계적 하중과 열하중은 차륜의 균열과 잔류응력 등을 발생시키는 것으로 알려져 있다. 따라서, 본 연구에서는 차량 주행 시의 브레이크 이력과 하중 조건을 고려한 열 구조 연성해석을 수행하여 차륜에 부하되는 최대응력을 추정하였으며, 이 값을 파괴역학 파라미터인 응력확대계수에 적용하여 차륜의 안전성을 평가하였다.

곡선부 통과열차의 레일 경좌 변화에 따른 주행안전성 해석 (A Running Safety Analysis of Railway Vehicle passing through Curve According to Rail Inclination Change)

  • 손명선;엄범규;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1922-1928
    • /
    • 2011
  • The rail inclination produces a wider bearing area between the wheel and the rail by moving the wheel rail contact area away from the gauge towards the centre of the railhead, thus improving the wear pattern of the railhead and wheel treads. It is essential to keep the rail inclination within the allowable range to ensure optimum track geometry. Neglecting the rail inclination geometrical parameters in a track quality evaluation can cause safety of railway vehicle and serviceability problems. In this paper, we examined the effect of the rail inclination in general geometry state of the railway track using VI-Rail and analyzed running safety when the railway vehicle passing through curves depending on change of the rail inclination and running speed.

  • PDF