• Title/Summary/Keyword: Safety wheel

Search Result 444, Processing Time 0.023 seconds

A Study on the Design of Small-Scaled Derailment Simulator considering Similarity Rules (상사법칙을 고려한 소형탈선시뮬레이터 설계에 관한 연구)

  • Eom, Beom-Gyu;Lee, Se-Yong;Oh, Se-Been;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1085-1091
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. This paper presents the design of the small-scaled derailment simulator and the example design case of a small scale bogie. The simulator could be used in the study about the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and the safety parameter such as derailment coefficient and critical speed.

  • PDF

Validation of a Vehicle Model and an ABS Controller with a Commercial Software Program (상용 소프트웨어를 이용한 차량 모델 및 ABS 제어기의 성능 평가)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.180-187
    • /
    • 2007
  • This paper presents a mathematical vehicle model that is designed to analyze the dynamic performance and to develop various safety control systems. Wheel slip controllers for ABS is also formulated to improve the vehicle response and to increase the safety on slippery road. Validation of the model and controller is performed by comparison with a commercial software package, CarSim. The result shows that performances of developed vehicle model are in good accordance with those of the CarSim on various driving conditions. Developed ABS controller is applied to the vehicle model and CarSim model, and it achieves good control performance. ABS controller improves lateral stability as well as longitudinal one when a vehicle is in turning maneuver on slippery road. A driver model is also designed to control steer angle of the vehicle model. It also shows good performance because the vehicle tracks the desired lane very well.

Effect of Road Load Determination Methods on the Fuel Economy Measurement using WMTC in Two-wheel Vehicles (이륜자동차의 주행저항 결정 기법이 WMTC 연비 측정에 미치는 영향)

  • Lee, Gwang Goo;Yong, Boojoong;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2018
  • There are some ambiguities of the information on the fuel economy provided to the consumers because the standard and the detailed regulations for the fuel economy of the two-wheeled vehicle have not been established in Korea. Since Korea has been a signatory of World Forum for Harmonization of Vehicle Regulations since 1998, it is possible to remove the ambiguities by adopting the WMTC (Worldwide-harmonized Motorcycle Test Cycle) measurement method for the fuel economy of the two-wheel vehicle. As a preliminary study on the WMTC mode fuel economy, road loads measured by coast down method and table method were compared for the two types of two-wheeled motorcycles on sales in domestic market. In the same model, it was confirmed that the deviation of WMTC mode fuel efficiency was below -5% between products. On the other hand, the difference of WMTC fuel economy exceeded 5% between the coast down method and table method.

Influence of Operating Condition on Grinding Temperature in High Effect Grinding (고능률 가공에서 연삭 온도에 미치는 연삭 조건의 영향)

  • 김남경;강대민;송지복
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.31-39
    • /
    • 1990
  • In this paper, the influence of the table speed, metal removal rate and grinding fluid on long wheel workpiece contact zone at high effect grinding was investigated by theoretical analyses and measuring the temperature, and discussed by the temperature distribution in grinding surface layer. Main results obtained are as follows, 1) Rega.dless of the table speed, the temperature gap of the workpiece(heat influx) is about 6-8 times as high in dry condition as in wet condition. 2) Good grinding condition can be obtained owing to the effect of grinding fluid without any burning defect under the condition of the metal removal rate(1.0mm$^3$/mm.s) in case of wet grinding. 3) When the depth from the surface layer is about 1.25-1.5mm under the condition of the slow table speed, surface temperature goes up higher as the table speed slows down, because long contact time is laked at the surface layer. 4) In case of the same metal removal rate, the lower the table speed becomes, the higher the surface temperature is, because grinding depth has a far more influence on wheel workpiece contact zone than the table speed.

  • PDF

Development of Driving Control Algorithm for Vehicle Maneuverability Performance and Lateral Stability of 4WD Electric Vehicle (4WD 전기 차량의 선회 성능 및 횡방향 안정성 향상을 위한 주행 제어 알고리즘 개발)

  • Seo, Jongsang;Yi, Kyongsu;Kang, Juyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • This paper describes development of 4 Wheel Drive (4WD) Electric Vehicle (EV) based driving control algorithm for severe driving situation such as icy road or disturbance. The proposed control algorithm consists three parts : a supervisory controller, an upper-level controller and optimal torque vectoring controller. The supervisory controller determines desired dynamics with cornering stiffness estimator using recursive least square. The upper-level controller determines longitudinal force and yaw moment using sliding mode control. The yaw moment, particularly, is calculated by integration of a side-slip angle and yaw rate for the performance and robustness benefits. The optimal torque vectoring controller determines the optimal torques each wheel using control allocation method. The numerical simulation studies have been conducted to evaluated the proposed driving control algorithm. It has been shown from simulation studies that vehicle maneuverability and lateral stability performance can be significantly improved by the proposed driving controller in severe driving situations.

Design of Small-Scaled Derailment Simulator for Investigating Bogie Dynamics

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • International Journal of Railway
    • /
    • v.4 no.2
    • /
    • pp.50-55
    • /
    • 2011
  • The dynamic stability of railway vehicle has long been one of the important issues in railway safety. The dynamic simulator has been used as a tool for investigating the dynamic stability of railway vehicles and wheel/rail interfaces. In particular, small scale simulators have been widely used in laboratory studies instead of full scale roller rigs which can be quite costly and rather inconvenient for testing out the effect of diverse design parameters. But techniques for design of a small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail systems and the bogie systems have not been well developed in Korea. Therefore, a research on the development of a small scale simulator for investigating bogie dynamics needs to be undertaken. The present paper investigates design of a small-scaled derailment simulator and the design of a small scale bogie. The simulator developed can be used to investigate the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and key dynamic performance parameters such as derailment coefficient and critical speed.

Safety Assessment for the 3 Piece Alloy Wheel by Finite Element Method (유한요소법에 의한 3 Piece Alloy Wheel의 안전성 평가)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, En-Chul;Lee, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.885-888
    • /
    • 2009
  • 자동차용 Alloy Wheel은 차량의 수직하중이나 가로 방향 하중, 구동, 제동토크 등 주행 시에 발생하는 여러 형태의 응력을 받으면서 사용되므로 이러한 응력을 견딜 수 있는 강성은 물론 차량 부품으로서의 요구 수명도 만족하여야 한다. 알루미늄 휠은 개발 후 규격에 준하는 내구성 평가를 위하여 반경 방향 부하 내구시험과 굽힘모멘트 내구시험과 주행 중 요철이나 벽돌 등에 의한 노면으로부터 갑작스런 하중에 대한 내충격성 평가를 위한 충격시험이 실행되고 있다. 이러한 시험은 많은 시간이 소요되고 있으며, 또한 시험 중 불합격 판정이 날 경우 또다시 처음의 공정을 모두 거쳐 다시 시험을 하게 된다. 3 Piece와 같은 알루미늄 휠은 여러 공정에 의한 생산되어지기 때문에 많은 시간적, 물질적 손실이 일어나고 있다. 따라서 자동차용 알루미늄 휠의 요구조건을 충분히 만족시키며 소비자의 요구에 맞는 품질과 시간을 충족시켜 기업경쟁력 확보는 물론 원가절감에 의한 기업 경쟁력 향상을 위하여 설계 단계서부터 시험조건을 고려한 내구성 해석에 의한 알루미늄 휠의 시험횟수를 단축하고자 한다. 본 논문에서는 3 Piece 알루미늄 휠의 축(shaft)하중에 의한 내구성 평가에 대하여 CAE시스템을 이용하여 보다 빠르고 정확한 결과를 산출함으로서 설계시간의 단축은 물론 다양한 형상의 제품들을 설계단계에서부터 생산에 이르기까지의 해석활용법을 수립하고자 하였다.

  • PDF

DEFECT EVALUATION IN RAILWAY WHEELSETS

  • Kwon, Seok-Jin;Lee, Dong-Hyong;Seo, Jung-Won;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1940-1945
    • /
    • 2007
  • The wheelsets are one of most important component: damages in wheel tread and press fitted axle are a significant cost for railway industry. Since failure in railway wheelset can cause a disaster, regular inspection of defects in wheels and axles are mandatory. Ultrasonic testing, acoustic emission and eddy current testing method and so on regularly check railway wheelset in service. However, it is difficult to use this method because of its high viscosity and because its sensitivity is affected by temperature. Also, due to noise echoes it is difficult to detect defects initiation clearly with ultrasonic testing. It is necessary to develop a non-destructive technique that is superior to conventional NDT techniques in order to ensure the safety of railway wheelset. In the present paper, the new NDT technique is applied to the detection of surface defects for railway wheelset. To detect the defects for railway wheelset, the sensor for defect detection is optimized and the tests are carried out with respect to surface and internal defects each other. The results show that the surface crack depth of 1.5 mm in press fitted axle and internal crack in wheel could be detected by using the new method. The ICFPD method is useful to detect the defect that initiated in the tread of railway wheelset.

  • PDF

The Development of a Steering Control Apparatus for the Two Wheel Driving Electric Vehicles (2륜구동 전기차량용 회전 제어 장치 개발)

  • Lim, Dong-gyun;Shon, Min-ho;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1115-1118
    • /
    • 2015
  • Two wheel type electric vehicles driving with the electric motors for guard are used increasingly at the airport and harbor place to move between narrow indoors. This type two wheel electric vehicles are powerd by batteries and using the steering control apparatus including multi sensors and handle operating device for forward and backward, rotating moving. At this research, we design sensor interfacing electronic control system use only the center of foot balance without the handle type steering apparatus. This design is for safety of drivers at one's cornering.

  • PDF

Design and development of in-wheel motor-based walking assistance system

  • Park, Hyeong-Sam;An, Duk-Keun;Kim, Dong-Cheol;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.371-376
    • /
    • 2022
  • The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. It is a system structure of an integrated actuator and brake system that can avoid obstacles in consideration of the safety of the elderly and is easy to install on the device. In this paper, the design of a lightweight walking aid was designed to increase the convenience of the socially disadvantaged and the elderly with reduced exercise ability. In addition, in order to overcome the disadvantage of being inconvenient to use indoors due to the noise and vibration of the motor during operation, an In-Wheel type motor is applied to develop and apply a low noise, low vibration and high efficiency drive system.