• Title/Summary/Keyword: Safety ground

Search Result 1,834, Processing Time 0.031 seconds

Measurement and Analysis of Ground Impedance according to Arrangement of Auxiliary Probe around Ground Grid (접지 그리드에서의 보조전극 배치에 따른 접지임피던스 측정 및 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.46-50
    • /
    • 2015
  • This paper describes the measurement and analysis of ground impedance according to arrangement of auxiliary probe around ground grid using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method involves passing a current between a ground electrode and a current probe, and then measuring the voltage between a ground electrode and a potential probe. To minimize interelectrode influences due to mutual resistances, the current probe is a generally placed at a substantial distance from the ground electrode under test. In order to analyze the effects of ground impedance due to the arrangement of auxiliary probe and frequency, ground impedances were measured in case that the arrangements of auxiliary probe were straight line, perpendicular line, and horizontal line. The distance of current probe was located from 10[m] to 200[m] and the measuring frequency was ranged from 55[Hz] to 513[Hz]. As a consequence, the ground impedance increases with increasing the distance from the ground electrode to the point to be tested, but the ground impedance decreases with increasing the frequency.

Analytical study on safety factor of concrete pole installed in sloped ground (콘크리트 전주의 경사지 전도 안전율에 관한 해석 연구)

  • Shin, Dong-Geun;Yoon, Ki-Yong;Lee, Seung-Hyun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.433-436
    • /
    • 2007
  • We analyzed the sloped ground safety factor, which is not presented in the design specification, using a computational analysis program L-Pile Plus 13.8. To achieve this we chose a required parameter set and a level ground safety factor presented in the design specification, and then determined its values comparing with the change of the safety factor according to the parameter. Using these parameters, we estimated the sloped ground safety factor for the slope of 35 degrees considering the improvement value of the slope presented in the design specification. As a result of this analysis, we obtained the smaller safety factor by about 0.7 times than the case of the level ground and verified that a number of concrete poles fail to assure 1 degree of the safety factor. We, therefore, concluded that an adjustment of the embedment depth is required in the case of the sloped ground.

  • PDF

Study on Improvement Plan of System through Analysis of Ground Sink Accidents - Focused on the management of underground facilities and their surrounding ground - (지반함몰 사고 분석을 통한 제도 개선안 연구 - 지하시설물 및 주변지반 관리 중심으로 -)

  • Kim, Dong-jin;Lee, Jong-keun;Kim, Hong-kyoon;No, Tae-kil
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • The purpose of this study is to propose a system improvement plan to prevent ground sinking accidents. To do this, follow the procedure below. First, it defines terms that are used interchangeably, such as ground subsidence and ground depression. Second, analysis of the current status and cause of ground sink, and the analysis of the correlation between rainfall and ground sink causes, derives priority management causes. Third, we propose a system improvement plan for the cause of priority management. As a result, damage to underground pipes and inadequate underground works were identified as the cause of priority management, and two system improvement plans to manage them were proposed. The results of this study can be used as basic data for improving the system for more effective prevention of underground sink in the future.

Stress Monitoring System for Buried Gas Pipeline in Poor Ground (연약지반 배관응력 모니터링 시스템 개발 및 적용)

  • Hong, Seong-Kyeong;Kim, Joon-Ho;Jeong, Sek-Young
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.41-47
    • /
    • 2006
  • This paper introduces stress monitoring system for buried gas pipeline in poor ground. During the six months of improvement construction of poor ground, maximum settlement of gas pipeline is about 40 cm. This value represents relative small compared to the initial settlement estimation of ground improvement construction plan, 90 cm. Also, this paper includes the result of finite element analysis of gas pipeline to confirm safety of pipelines in poor ground. The stress monitoring system for gas pipeline was developed to guarantee the safety of buried gas pipeline in poor ground. Eventually, the ground improvement workings are ended safely and it is proved that the pipeline has no safety problem.

A Study on the Variation Characteristics of Ground Resistance According to Ground Parameters (대지파라미터에 따른 접지저항의 변동 특성에 관한 연구)

  • Han, Ki-Boong;Jeong, Se-Joong;Lee, Dae-Jong;Lee, Sang-Ick
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.434-436
    • /
    • 2000
  • It is difficult to accurately measure the ground resistance because it varies widely not only with the type of soil but also with the ground parameters; the moisture, the temperature the buried depth of electrodes, and the ground augmentation material and so on. Therefore, in this paper we analyzed the relation between the parameters and the resistance of ground in order to obtain a method of maintaining ground resistance stable. In experiments, the variation coefficients of ground resistance were calculated by the monthly measured data. The ground resistance decreases as the length of the ground rod increases. The variation between the ground resistance and the moisture rate of soil was low in case of using the ground augmentation material. Without the ground augmentation material, the ground resistance decreases as the moisture rate of soil increases. The ground resistance becomes small when the earth temperature becomes low.

  • PDF

A Research on Aircraft Ground Service Agents' Acceptance of Smart Safety Technology Using Unified Theory of Acceptance and Use Technology (항공기 지상조업 서비스 직원의 안전관리 향상을 위한 스마트안전기술 수용성 연구)

  • Young Ju Oh;Kee Woong Kim;Jong Duk Jeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.3
    • /
    • pp.171-179
    • /
    • 2024
  • Aircraft ground services are essential to the aviation industry and aviation services, yet management systems and improvement measures for operations and safety have not been adequately addressed in the revision of the old aviation law. This study utilized structural equation modeling and the UTAUT model to analyze the perceived acceptance of smart safety technologies among ground handling service workers. The findings indicated that perceived ease of use had a more significant than perceived usefulness impact on the acceptance of smart safety technologies among ground handling service workers. In light of these findings, it is recommended that the aviation safety management authority establish a policy vision for the adoption of smart safety technologies and consider implementing measures such as the introduction of smart safety technology test beds to enhance safety management and work efficiency of aircraft ground handling services.

The Variation of Slope Stability by Ground Water Level in Railway Lines (지하수위에 따른 철도사면의 안정성 변화)

  • Kim, Hyun-Ki;Shin, Min-Ho;Shin, Ji-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF

Design and Fabrication of High Frequency Ground Impedance Measuring System for Assessment of Grounding System for Lightning Protection (낙뢰 보호용 접지시스템 평가를 위한 고주파 접지임피던스 측정시스템의 설계 및 제작)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min;Kim, Young-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the design and fabrication of high frequency ground impedance measuring system for assessment of grounding system for Lightning protection. The ground impedance measuring system has been designed and fabricated which makes it possible to assess the ground impedance by frequency ranges from 100 Hz to 1 MHz. The effective grounding systems having a very low impedance to electromagnetic disturbance such as lightning surges and noises in microelectronics and high-technology branches are strongly required. In order to analyze the dynamic characteristic of grounding system impedances in lightning and surge protection grounding systems, it is highly desirable to assess the ground impedances as a measure of performance of grounding system in which lightning and switching surge currents with fast rise time and high frequency flow. The measuring system is based on the variable frequency power supply and consists of signal circuit part, main control part, data acquisition and processing unit, and voltage and current probe system. The ground impedance measuring system can be used to assess grounding system during occurrence of lightning.

A study of settlement safety for existing ground with twin tunnel progressing (쌍굴굴착으로 인한 인근지반의 침하 안전에 관한 연구)

  • 정대석
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.55-61
    • /
    • 1992
  • An engineer designing a tunnel in an urban area should be to predict the magnitude and distribution of ground movements which are important to Investigate the potential damage to the existing structures around tunnel. The present study examines available theories and emprical equations, and tries to investigate quantativily ground movements around tunnel with tunnel progressing. Approcaches to the problem of ground movements associated with twin tunnel was and elasto - plastic finite element method. Typical section in Seoul Subway were selected in numerical study. The analysis and study was done with respect. to surface, subsurface and crown settlements with varying ground conditions, tunnel geommetry and construction conditions.

  • PDF

Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Lee, Je-Bong;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2011
  • This study focused on health risk assessment via multi-routes of As exposure to establish a target cleanup level (TCL) in abandoned mines. Soil, ground water, and rice samples were collected near ten abandoned mines in November 2009. The As contaminations measured in all samples were used for determining the probabilistic health risk by Monte-Carlo simulation techniques. The human exposure to As compound was attributed to ground water ingestion. Cancer risk probability (R) via ground water and rice intake exceeded the acceptable risk range of $10^{-6}{\sim}10^{-4}$ in all selected mines. In particular, the MB mine showed the higher R value than other mines. The non-carcinogenic effects, estimated by comparing the average As exposure with corresponding reference dose were determined by hazard quotient (HQ) values, which were less than 1.0 via ground water and rice intake in SD, NS, and MB mines. This implied that the non-carcinogenic toxic effects, due to this exposure pathway had a greater possibility to occur than those in other mines. Besides, hazard index (HI) values, representing overall toxic effects by summed the HQ values were also greater than 1.0 in SD, NS, JA, and IA mines. This revealed that non-carcinogenic toxic effects were generally occurred. The As contaminants in all selected mines exceeded the TCL values for target cancer risk ($10^{-6}$) through ground water ingestion and rice intake. However, the As level in soil was greater than TCL value for target cancer risk via inadvertent soil ingestion pathway, except for KK mine. In TCL values for target hazard quotient (THQ), the As contaminants in soil did not exceed such TCL value. On the contrary, the As levels in ground water and polished rice in SD, NS, IA, and MB mines were also beyond the TCL values via ground water and rice intake. This study concluded that the health risks through ground water and rice intake were greater than those though soil inadvertent ingestion and dermal contact. In addition, it suggests that the abandoned mines to exceed the risk-based TCL values are carefully necessary to monitor for soil remediation.