• Title/Summary/Keyword: Safety algorithm

Search Result 1,835, Processing Time 0.029 seconds

Algorithms for Reliability Calculation of Multistate System

  • Seong Cheol Lee
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.173-178
    • /
    • 2001
  • This paper studies the structure and reliability of homogeneous s-coherent multistate system. We describe efficiency of inclusion-exclusion algorithm and pivotal decomposition algorithm for reliability calculation of 2-states system which developed in (Lee 1999) [10]. We extend our method, applied in [10], to the case when components of the system are given multi-states. As an application, the high pressure injection system of a pressurized water reactor is modeled as a multistate system composed of homogeneous s-coherent multistate subsystems. And Several examples are illustrated.

  • PDF

Performance improvement of heuristic algorithm to assign job in parallel line inspection process (병렬라인 검사공정의 작업배분을 위한 휴리스틱 알고리즘의 성능 개선)

  • Park, Seung-Hun;Lee, Seog-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.167-177
    • /
    • 2012
  • In this paper, we raised the performance of heuristic algorithm to assign job to workers in parallel line inspection process without sequence. In previous research, we developed the heuristic algorithm. But the heuristic algorithm can't find optimal solution perfectly. In order to solve this problem, we proposed new method to make initial solution called FN(First Next) method and combined the new FN method and old FE method using previous heuristic algorithm. Experiments of assigning job are performed to evaluate performance of this FE+FN heuristic algorithm. The result shows that the FE+FN heuristic algorithm can find the optimal solution to assign job to workers evenly in many type of cases. Especially, in case there are optimal solutions, this heuristic algorithm can find the optimal solution perfectly.

Development of a Longitudinal Control Algorithm based on V2V Communication for Ensuring Takeover Time of Autonomous Vehicle (자율주행 자동차의 제어권 전환 시간 확보를 위한 차간 통신 기반 종방향 제어 알고리즘 개발)

  • Lee, Hyewon;Song, Taejun;Yoon, Youngmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • This paper presents a longitudinal control algorithm for ensuring takeover time of autonomous vehicle using V2V communication. In the autonomous driving of more than level 3, autonomous systems should control the vehicles by itself partially. However if the driver's intervention is required for functional safety, the driver should take over the control reasonably. Autonomous driving system has to be designed so that drivers can take over the control from autonomous vehicle reasonably for driving safety. In this study, control algorithm considering takeover time has been developed based on computation method of takeover time. Takeover time is analysed by conditions of longitudinal velocity of preceding vehicle in time-velocity plane. In addition, desired clearance is derived based on takeover time. The performance evaluation of the proposed algorithm in this study was conducted using 3D vehicle model with actual driving data in Matlab/Simulink environment. The results of the performance evaluation show that the longitudinal control algorithm can control while securing takeover time reasonably.

Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm (적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Ja Ho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

Development of Advanced Emergency Braking Algorithm for the enhanced longitudinal safety (종방향 안전도 향상을 위한 자동비상제동 알고리즘 개발)

  • Lee, Taeyoung;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents a development of the Advanced Emergency Braking (AEB) Algorithm for passenger vehicles. The AEB is the system to slow the vehicle and mitigate the severity of an impact when a rear end collision probability is increased. To mitigate a rear end collision, the AEB comprises of a millimeter wave radar sensor, CCD camera and vehicle parameters of which are processed to judge the likelihood of a collision occurring. The main controller of the AEB algorithm is composed of the two control stage: upper and lower level controller. By using the collected obstacle information, the upper level controller of the main controller decides the control mode based not only on parametric division, but also on physical collision capability. The lower level controller determines warning level and braking level to maintain the longitudinal safety. To decide the braking level, Last Ponit To Brake and Steer (LPTB/LPTS) are compared with current driving statues. To demonstrate the control performance of the proposed AEBS algorithm's, closed-loop simulation of the AEBS was conducted by using the Matlab simlink and CarSim software.

Application of inverse reliability method to estimation of cable safety factors of long span suspension bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.195-207
    • /
    • 2006
  • An efficient and accurate algorithm is proposed to estimate cable safety factor of suspension bridges satisfying prescribed reliability levels. Uncertainties in the structure and load parameters are incorporated. The proposed algorithm integrates the concepts of the inverse reliability method and deterministic method for assessing cable safety factors of suspension bridges. The unique feature of the proposed method is that it offers a tool for cable safety assessment of suspension bridges, when the reliability level is specified as a target to be satisfied by the designer. After the accuracy and efficiency of the method are demonstrated through two numerical examples, the method is used to estimate cable safety factors of suspension bridges with span length ranging from 2000 to 5000 m. The results show that the deterministic method overestimates cable safety factor of suspension bridges because of neglecting the parameter uncertainty effects. The actual cable safety factor of suspension bridges should be estimated based on the proposed method.

A Simple Multispectral Imaging Algorithm for Detection of Defects on Red Delicious Apples

  • Lee, Hoyoung;Yang, Chun-Chieh;Kim, Moon S.;Lim, Jongguk;Cho, Byoung-Kwan;Lefcourt, Alan;Chao, Kuanglin;Everard, Colm D.
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • Purpose: A multispectral algorithm for detection and differentiation of defective (defects on apple skin) and normal Red Delicious apples was developed from analysis of a series of hyperspectral line-scan images. Methods: A fast line-scan hyperspectral imaging system mounted on a conventional apple sorting machine was used to capture hyperspectral images of apples moving approximately 4 apples per second on a conveyor belt. The detection algorithm included an apple segmentation method and a threshold function, and was developed using three wavebands at 676 nm, 714 nm and 779 nm. The algorithm was executed on line-by-line image analysis, simulating online real-time line-scan imaging inspection during fruit processing. Results: The rapid multispectral algorithm detected over 95% of defective apples and 91% of normal apples investigated. Conclusions: The multispectral defect detection algorithm can potentially be used in commercial apple processing lines.

The Quantification of the Safety Accident of Foreign Workers in the Construction Sites (건설현장 외국인 노동자의 안전사고 예측 방안)

  • Kim, Ji-Myong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.25-31
    • /
    • 2024
  • The purpose of this study is to propose a model development framework to predict the risk of safety accidents for foreign workers based on a deep learning algorithm for systematic safety management of foreign workers in the construction industry. Many past studies have shown that foreign workers working at construction sites are relatively more vulnerable to safety accidents than non-foreign workers, but quantitative research on the risk of safety accidents among foreign workers working at construction sites is lacking. Furthermore, due to a lack of predictive research on safety accidents, realistic and systematic safety management for foreign workers is not possible. Therefore, in order to complement this, this study proposes a deep learning algorithm-based model that collects, analyzes, and predicts safety accident data occurring at construction sites for systematic safety management of foreign workers at construction sites. The results and framework of this study can be used to analyze and predict various safety accident risks that occur at construction sites, and ultimately can serve as an important guideline for safety management of foreign workers at construction sites.

The Algorithm of Safety Equipment of The Hydraulic Excavator with Crane Working (크레인 기능을 가진 굴삭기 안전장치 알고리즘)

  • 손구영;김승수;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.75-79
    • /
    • 2002
  • A hydraulic Excavator is applied for outdoor tasks in construction, agriculture and undersea etc. When a hydraulic Excavator works crane function tasks, most of disasters happen. In this study, In order to preventing these disasters, the safety equipment algorithm for crane working is developed, and the safety equipment algorithm for crane working is being developed. The proposed control algorithm(Zero Moment Point) is designed to avoid overload. The hydraulic excavator for crane function must work within a maximum limit of load. To accurately detect a working load, pressure sensors of boom, arm cylinder, and angle sensors of boom, arm and bucket joint are used.

  • PDF

A Study on Safty Diagnosis and Evaluation of Oil Transformer using Fuzzy Algorithm (퍼지알고리즘을 이용한 유증 변압기의 안전진단 및 평가에 관한 연구.)

  • Kim, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.67-68
    • /
    • 2006
  • In this paper, we introduced about safety algorithm of transformer for MV/LV distribution customers using by fuzzy theory. Overload of transformer becomes different by surrounding temperature. And parameters about overload of transformer are connection each other. Therefore, we organize safety algorithm consider overload of transformer and surrounding temperature in this research. And we induce the relational expression of each parameters using experiment data of IEEE std C57.91-1995. Deduction of result used fuzzy reasoning. We guess the safety algorithm suggested in this paper shows the new direction that heavy electrical equipments including switchboard are going to develop in the future.

  • PDF