• Title/Summary/Keyword: Safety Working Load

Search Result 135, Processing Time 0.022 seconds

An Experimental Study on the Stiffness Change of Scaffold Working Plate caused by Damage of Cross-beam (보재의 손상에 따른 비계용 작업발판의 강성 변화에 대한 실험적 연구)

  • Sung, Yong-won;Kang Min-guk;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.27-35
    • /
    • 2021
  • This study investigated the change in stiffness and deflection of a scaffold working plate caused by damage to a cross-beam in the plate. Experiments were conducted considering various load and damage conditions of cross-beams. A cross-beam falling off from the working plate was considered damaged. The load-displacement curves of specimens at the center of the uniform load showed that the working plate stiffness decreased by 14.66%-1.89%, depending on the load interval due to the damage of one cross-beam. A reduction in the stiffness of 33.94%-40.76% resulted from the damage of two cross-beams. Moreover, the displacement increased by an average of 25% when one cross-beam was damaged and an average of 65% when two cross-beams were damaged. Therefore, damage to the cross-beam in the working plate can potentially cause accidents and harm workers. As the load increases, the risk of an accident due to the aforementioned damage also increases because the stiffness remarkably decreases with the load increase. Further, the damage to the cross-beam mainly reduces the stiffness but increases the displacement rather than the strength of the working scaffold plate.

Simplistic Beam Theory-based Structural Safety Evaluation Method for Block Structure on the A-Carrier (블록 구조물 적치용 지지대의 빔 이론 기반 구조 안전성 평가법)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.358-364
    • /
    • 2024
  • Type A carrier structures that support blocks or equipment gradually deform over time with load changes, reducing the area in contact with the block and changing the load pattern from distributed to concentrated during construction work in the shipyard. This phenomenon has the potential to misrepresent actual service loads. In particular, A carriers are often used by small manufacturers, who often do not have specialized engineering capabilities, necessitating the development of a method for easy calculation of carrier safe working load. This study proposes a quick evaluation method for the long-term safe working load of Type A carriers, to predict the plastic deformation and safety issues resulting from changes in load distribution. Based on the results of finite element analysis (beam and shell modeling) of the centralized load, beam-theory was modified to propose a method for determining the distributed load conditions of the A-carrier. In beam modeling, the theoretical value was multiplied by a correction factor of 0.73 for concentrated loads and 0.69 for distributed loads to obtain a safe working load. For shell modeling, a correction factor of 0.75 can be used for concentrated loads and 0.69 for distributed loads. This study can serve as a basis for improving the safety of shipbuilding, enabling quick and effective decisions for determining safe working loads in actual working environments.

Load and Safety Analysis for Plow Operation in Dry Fields (건답에서 쟁기작업의 부하특성 및 안전도 분석)

  • Lee, Ju-Yeon;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2019
  • This study derives load characteristics and analyzes the safety of plowshares operating in dry fields. We mounted a three-blade, reversible plow on a 23.7 kW tractor and measured the plow's tractive force as well as the torque from the engine output shaft on the rear axle under various working speeds (L4, M1, M2, M3). We chose a Korean test site of Seomyeon, Chuncheon with sandy soil texture, as determined using the USDA method. We constructed the load spectrum for torque and tractive force using measured data and derived the fatigue life of the plowshare from a stress-cycle (S-N) curve of the plow material. Our results show that the M3 gear maximizes the driving shaft torque loads and, applying the tractive force load spectrum, creates a cumulative damage sum of $4.14{\times}10^{-5}$. Considering sampling time, we estimate a fatigue life of 805 hours while using the M3 gear. When using the other working speeds, however, all of the stress levels fell within the endurance limits and, therefore, our model predicts infinite plowshare lifetimes. For this analysis, we used a yield strength of 1,079 MPa for the plowshare and static safety factors, analyzed using the maximum stress, between 6.83 and 8.63 under each working speed.

Case Study on the Safety Working Load of a LM-Guide Structure (볼나사일체형 LM가이드 설계에 관한 연구)

  • Yoon, Young-Sik;Shin, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.820-825
    • /
    • 2007
  • A ballscrew-linear motion(LM) guide is well-described by its name: it is a LM guide that runs by ballscrew. It consists of LM rail, LM block, end plate, screw, nut and bearing balls. The ballscrew-LM guide has many advantages compared with conventional LM guide. The high efficiency achieved with rolling contact devices permits the employment of antibacklash methods. The balls provide the only physical contact between nut rail and block and ball screw and nut replacing the sliding friction with a rolling motion. The life of the ballscrew-LM is determinated by the balls. The objective of this paper is to introduce the design of the ballscrew-LM with the safety working load.

  • PDF

Structural Performance Evaluation of System Scaffolding for Elevator Installation Work (엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가)

  • Jong Moon Hwang;Gi Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

The Algorithm of Safety Equipment of The Hydraulic Excavator with Crane Working (크레인 기능을 가진 굴삭기 안전장치 알고리즘)

  • 손구영;김승수;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.75-79
    • /
    • 2002
  • A hydraulic Excavator is applied for outdoor tasks in construction, agriculture and undersea etc. When a hydraulic Excavator works crane function tasks, most of disasters happen. In this study, In order to preventing these disasters, the safety equipment algorithm for crane working is developed, and the safety equipment algorithm for crane working is being developed. The proposed control algorithm(Zero Moment Point) is designed to avoid overload. The hydraulic excavator for crane function must work within a maximum limit of load. To accurately detect a working load, pressure sensors of boom, arm cylinder, and angle sensors of boom, arm and bucket joint are used.

  • PDF

An Analysis of Physical Load of the Shipping Work in Cold Storage Warehouses (냉동창고 출하작업의 신체부담 분석에 관한 연구)

  • 장성록
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.192-198
    • /
    • 1999
  • Work-related musculoskeletal disorders constitute a major source of employee disability and lost wages. Cumulative Trauma Disorders(CTD) refers to a category of physical conditions which result from chronic musculoskeletal injury. Assessment of CTD risk in industry at early stage allows for early control, a safe environment, and a healthier workforce. In this study, the physical load of the shipping work in the cold storage warehouse were especially investigated. Employees were working with almost unnatural posture in a very restricted work space. The questionnaire and biomechanical analysis were used to evaluate the physical load. Results from analyses showed that they were sufficiently exposed to CTD due to repetition and unnatural posture. Based on the analysis, ways for improving working conditions are proposed. The analysis and proposals in this paper will serve as a basic tool for designing/redesigning working environment such as improvement of tools and equipments, design of times for work/rest cycle.

  • PDF

Assessment of Safety and Load Carrying Capacity of Aged Jacket-Typed Dolphin by Ship-Impact Test (선박접안시험을 통한 자켓식 돌핀부두의 내하력 평가 방법 연구)

  • Jo, Byung-Wan;Kwon, Oh-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.9-18
    • /
    • 1998
  • An improved evaluation method of load-carrying capacity for the large-scaled offshore structures, which subjected to the axial force and bending moments simultaneously at the piles, was suggested with reliability analysis and advanced working stress method. Reliability analysis requires the fracture probability and safety factor(${beta}$) for each of forces and the load-carrying capacity due to combined action of axial force and bending moments from $P_n - {beta}$ Curve. The combined equation due to those forces, which suggested by the Korean Specification for the marine structure, was derived for the advanced working stress method and applied to evaluate the load-carrying capacity of jacket-type dolphin piers.

  • PDF

Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots (협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석)

  • Kim, Jae-Eun;Jang, Gil-Sang;Lim, KuK-Hwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

Experimental Method for Durability Evaluation of a Chisel Mounted on a Composite Working Implement

  • Han, Jeongwoo;Moon, Sanggon;Lee, Geunho;Kang, Daesik
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: A chisel mounted on working implement, such as agricultural machinery used in irregular farming conditions, is subjected to highly variable fatigue loading during work. To ensure the safety of the chisel on a working implement for the duration of its service life, fatigue testing must be performed with the proper fatigue test load conditions. In this study, working loads for a chisel were developed by reconstructing loads from strain gage data collected during field tests and used to conduct fatigue tests on the chisel component. Methods: FE analysis with nCode software was utilized to select the proper quantity and locations of strain gages for load measurements. A fatigue test was performed to experimentally verify the fatigue strength of the chisel and to evaluate the validity of the load history developed with the load reconstruction technique. Results: A strain history for the chisel was obtained from data collected during field tests. The data was filtered for the 14-16 km/h speed range, connected, and merged. The chisel load history was developed using the load reconstruction technique. The resulting load history was expressed as a load spectrum using the rain-flow counting method. Conclusions: A fatigue test was conducted on a chisel under a constant load condition with an equivalent load amplitude and number of cycles, as calculated by Miner's Rule for linear damage accumulation. During the fatigue test, there were no cracks at any position. It is concluded that the fatigue test method proposed in this study can be utilized successfully as a durability evaluation method for the chisel.