• Title/Summary/Keyword: Safety State

Search Result 2,704, Processing Time 0.024 seconds

Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect

  • Liu, Hongbo;Chen, Zhihua;Xu, Shuai;Bu, Yidu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.121-133
    • /
    • 2015
  • The aluminum dome has been widely used in natatorium, oil storage tank, power plant, coal, as well as other industrial buildings and structures. However, few research has focused on the structural behavior and design method of this dome. At present, most designs of aluminum alloy domes have referred to theories and methods of steel spatial structures. However, aluminum domes and steel domes have many differences, such as elasticity moduli, roof structures, and joint rigidities, which make the design and analysis method of steel spatial structures not fully suitable for aluminum alloy dome structures. In this study, a stability analysis method, which can consider structural imperfection, member initial curvature, semi-rigid joint, and skin effect, was presented and used to study the stability behavior of aluminum dome structures. In addition, some meaningful conclusions were obtained, which could be used in future designs and analyses of aluminum domes.

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

Study on Algorithm of High-Speed Scanning System for Railway Vehicle Running Units Using High Performance Camera (고성능 카메라를 이용한 철도차량 주행장치용 고속스케닝시스템 알고리즘에 관한 연구)

  • Huh, Sung Bum;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.9-14
    • /
    • 2020
  • It is necessary to apply a non-contact high-speed scanning system that can measure in real time in order to prevent the dropping and deformation of the main parts of railway vehicles during high-speed running. Recently, research on a scanning system that detects the deformation state of main parts from a video image taken using a high-performance camera has been actively pursued. In this study, we researched an analysis algorithm of a high-speed scanning system that uses a high-performance camera to monitor the deformation and drop-out state of the main components of the running units equipment in real time.

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

Seismic vulnerability evaluation of a 32-story reinforced concrete building

  • Memari, A.M.;Motlagh, A.R. Yazdani;Akhtari, M.;Scanlon, A.;Ashtiany, M. Ghafory
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Seismic evaluation of a 32-story reinforced concrete framed tube building is performed by checking damageability, safety, and toughness limit states. The evaluation is based on Standard 2800 (Iranian seismic code) which recommends equivalent lateral static force, modal superposition, or time history dynamic analysis methods to be applied. A three dimensional linearly elastic model checked by ambient vibration test results is used for the evaluation. Accelerograms of three earthquakes as well as linearly elastic design response spectra are used for dynamic analysis. Damageability is checked by considering story drift ratios. Safety is evaluated by comparing demands and capacities at the story and element force levels. Finally, toughness is studied in terms of curvature ductility of members. The paper explains the methodology selected and various aspects in detail.

A Study on Authoritativeness of Electric Fire by Activating of Fire Damaged MCCB (소손된 배선용 차단기 동작상태에 의한 전기화재 규명의 신뢰성에 관한 연구)

  • Lee, Jong-Hwa;Mun, Yong-Soo;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • In the fire there are fusion signs and damage by fire, and insulation aging and carbonization of the electric wiring in the ignition spot because of special characteristic of the appliance in the electricity fire. Because of the physical factor applied in the damage of fire, the decision of ignition spot by eye investigation is insufficient. In this paper, the cause of electricity fire is researched. The focus is on the operation state of operated MCCB(Molded Case Circuit Breaker) at the time of electricity fire. Through grasping the operation principle of MCCB and the experiment, the state of MCCB after fire suppression is discriminated. The distinction possibility on the exist of electricity fire is proposed.

The Effect of Cyclic Loading History on the Creep of $SiC_f/Si_3N_4$ Fiber-reinforced Composite (사이클 하중이력이 $SiC_f/Si_3N_4섬유강화 복합재료의 크리프에 미치는 영향)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2000
  • The influence of cyclic loading history on the creep behavior of the 30 vol% hot-pressed $SiC_f/Si_3N_4copmposite was experimentally investigated at $1200^{\circ}C$. The duration of loading/unloading had great effects on the creep behaviors. The short term duration cyclic loading history test results showed significant reduction in the primary and steady-state creep rates. For example, 300sec loading/300sec unloading history resulted in 70% lower steady-state creep rate than that of the continuous loading. However the long term duration cyclic loading history test results showed little change in creep rates compared to those of the continuous one. The reason for the significant change in the short term duration cycles was estimated due to the change in the stress redistribution between the fiber and matrix during the creep recovery in the primary stage.

  • PDF

An Application of the HRA Methodology in PSA: A Gas Valve Station (PSA의 인간신뢰도분석 모델의 적용)

  • 제무성
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.150-156
    • /
    • 2000
  • In this paper, the human error contributions to the system unavailability are calculated and compared to the mechanical failure contributions. The system unavailability is a probability that a system is in the failed state at time t, given that it was the normal state at time zero. It is a function of human errors committed during maintenance and tests, component failure rates, surveillance test intervals, and allowed outage time. The THERP (Technique for Human Error Rate Prediction), generally called "HRA handbook", is used here for evaluating human error rates. This method treats the operator as one of the system components, and human reliability is assessed in the same manner as that of components. Based on the calculation results, the human error contribution to the system unavailability is shown to be more important than the mechanical failure contribution in the example system. It is also demonstrated that this method is very flexible in that it can be applied to any hazardous facilities, such as gas valve stations and chemical process plants.ss plants.

  • PDF

State-of-the-art IVEF Service based on e-Navigation System

  • Oyunchimeg, Bayarmaa;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • In this paper, the state-of-the-art IVEF Service based on e-Navigation System was represented. The unification of the data exchange format among maritime-related systems is one of vital user-needs of e-Navigation, advantageous in bringing maritime safety and security. This paper propose the method to exchange marine information in IVEF, as recommended by the IALA, between VTS centers and Korea's GICOMS as well as the government-related agencies. To achieve this, a system data flow was designed which it acts as client and server. It enables the sending and receiving of Radar and CCTV images in accordance with the IVEF recommendation document of IALA.

Fracture Characteristics of Stainless Steel Under Low Temperature Conditions (저온조건하 스테인레스 강의 파괴 특성)

  • 김두환;한석규;안세희
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.108-115
    • /
    • 1999
  • It has been recognized that the mechanical properties of structural steels can be accepted very greatly in a state of normal temperature. While, under low temperature conditions the properties of the structural steels may not be appropriately achieved. When the various and particular structures will be constructed in an intense cold region afterward, the mechanical properties of a stainless steel under low temperature condition must be investigated. The purpose of this paper is to account for the fracture mechanics of structures in the state of low temperatures. The fracture toughness was examined through an experimental test from which the tensile strength and impact values of STS 304 were obtained. In order to demonstrate the present studies, the fracture toughness was compared with the test results for SWS 50 published previously by an author.

  • PDF