• Title/Summary/Keyword: Safety Management System for Construction Projects

Search Result 85, Processing Time 0.024 seconds

Investigations of Vulnerable Members and Collapse Risk for System Support Based on Damage Scenarios (손상시나리오 기반 시스템 동바리 취약부재 도출 및 붕괴 위험성 분석)

  • Park, Sae In;Park, Ju-Hyun;An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • In recent years, many construction projects become large and complicated, and construction accidents also steadily increase, which grows interest in the safety and maintenance during construction. Many of the construction accidents are related to temporary construction and structures, but the safety evaluation and management during construction are unclear and indefinite due to the short operating period and continuous change in the formation of the temporary structure. The system support, which is one of the temporary structures to support the pouring load of concrete, was proposed to easily install and dismantle members with connection parts pre-manufactured. The use of the system support is increasing to improve the safety of the temporary structure during construction. However, the system support, which consists of multiple members, still has uncertainties in connectivity between members and supports of vertical members. Therefore, this study analyzed the structure, load, and accident cases of the system support to define the damage scenarios for member connection, support condition, and lateral displacement. The decrease rate of the critical load was analyzed according to the damage scenarios based on the defined unit structure of the system support. In addition, this study provided vulnerable members for each damage scenario, which could induce instability of the temporary structures during design, construction, and operation of the structure.

Improvement Plan for Construction Management and Legislation of Donation Collection Facilities (기부채납 시설의 건설관리 및 법제에 관한 개선방안)

  • Lee, Juyong;Jung, Youngchul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.3-12
    • /
    • 2024
  • The donation collection system to secure infrastructure and land necessary for public development projects has been actively applied as an effective means of realizing public interest and the concept of recovering development profits, and has contributed greatly to society in public difficult financial conditions. However, due to the ambiguous legal standards and lack of legal grounds for the operation of the donation collection system, it has been arbitrarily used for administrative convenience in the form of granting a donation collection assistant to install infrastructure. In addition, infrastructure is a facility that is constructed and donated within development profits to obtain licenses, and is promoted to minimize construction costs to improve profitability, posing a risk of poor infrastructure planning, design, and construction, resulting in increased safety and maintenance costs for citizens. Continuous system and legal improvement are needed to improve the excellence, convenience, and safety of facilities that citizens will use for half a century through the improvement of the donation system.

Developing Measurement System for Key Performance Indicators on Building Construction Projects (건설 프로젝트 효율적 성과관리를 위한 핵심 지표 체계 구축)

  • Cha, Hee-Sung;Kim, Tae-Kyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.120-130
    • /
    • 2008
  • In construction industry, project performance should be evaluated in terms of project value objectives, i.e., cost, time, quality, safety, and environment. However, there have been few, if any, systematic approaches in assessing comprehensive performance level which encompasses the whole spectrum of project value objectives. It is non trivial to establish the standardized performance metric system due to the project individualities. This study provides a new approach in assessing the wide variety of project performance types by collecting the real industry project data. In addition, the proposed system has been validated through industry survey on project practitioners. It is concluded that the developed quantitative project performance measurement system would be effectively useful in indicating the level of current status of a particular project and furthermore, to provide a meaningful strategy for the future project in a more sustainable way.

Decision of Optimal Platform Location Considering Work Efficiency -Optimization by Excavator Specification- (작업의 효율성을 고려한 최적 플랫폼 위치 선정 방안 -굴삭기 제원에 따른 최적화-)

  • Lee, Seung-Soo;Park, Jin-Woong;Seo, Jong-Won;Kim, Sung-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.790-793
    • /
    • 2008
  • Recently, Intelligent Excavating System(IES) for earthwork automation is on progress since the end of 2006 as a part of construction technology innovation projects in Ministry of Land, Transport and Maritime Affairs. Task Planning System(TPS), one of the detail core technologies of IES, is an optimal work planning system in conditions of effectiveness, safety and economic efficiency by analyzing the work environment data based on earthwork design and work environment recognition technology. For effective earthwork planning, the location of platform must be the most optimal spot for minimization of time, maximization of productivity and reduction of overlapped work spaces and unnecessariness. Besides, the decision of optimal platform location is to be based on the specifications and then is able to be converted with the local area calculation algorithm. This study explains the decision of optimal platform location on the basis of local area from the work space separate process and judges the effectiveness.

  • PDF

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.

Design Verification Method of Offshore Separation Systems Based on System Dynamics (시스템 다이내믹스 기반 해양구조물 분리시스템의 설계검증 방법에 관한 연구)

  • Hwang, John-Kyu;Ko, Jae-Yong;Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2020
  • This paper proposes a design verification method based on system dynamics for offshore separation systems. Oil and gas separation systems are key components of offshore oil platforms; these systems determine the competitiveness of engineering, procurement, and construction (EPC) projects, especially in terms of added value. However, previous research on design verification has been limited to the process and deliverables of design. To address this, the study aims to develop a comprehensive design verification method and the associated functions from the perspective of project management, for the entire project life-cycle of offshore structures. The proposed methodology for design verification is expected to contribute toward effective and detailed designs as well as improve the competitiveness of EPC companies in constructing of shore structures during the early design stages. We first analyzed the separation system of the FPSO using the design verification method adopted by advanced countries and compared it with the system dynamics process formalized as ISO 15288. Subsequently, a tailored process for the design verification of the offshore structure was derived. It is shown that the proposed design verification method can be applied to the front-end engineering design process of of shore structures. Moreover, it can contribute toward the successful performance of offshore projects in the future and also minimize design changes and critical risks during the construction of these offshore structures.

A Study on The Enhancement of Aviation Safety in Airport Planning & Construction from a Legal Perspective (공항개발계획과 사업에서의 항공안전성 제고에 대한 법률적 소고)

  • Kim, Tae-Han
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.27 no.2
    • /
    • pp.67-106
    • /
    • 2012
  • Today air traffic at the airport is complicated including a significant increase in the volume of air transport, so aviation accidents are constantly occurring. Therefore, we should newly recognize importance of the Air Traffic Safety, the core values of the Air Traffic. The location of airport that is the basic infrastructure of the air traffic and the security of safety for facilities and equipments are more important than what you can. From this dimension, I analyze the step-by-step safety factors that are taken into account in the airport development projects from the construction or improvement of the airport within the current laws and institutions and give my opinion on the enhancement of safety in the design and construction of airport. The safety of air traffic, as well as airport, depends on location, development, design, construction, inspection and management of the airport including airport facilities because we have to carry out the national responsibility that prevents the risk of large social overhead capital for many and unspecified persons in modern society through legislation regarding intervention of specialists and locational criteria for aviation safety from the planning stage of airport development. In addition, well-defined installation standards of airports and air navigation facilities, the key points of the airport development phase, can ensure the safety of the airport and airport facilities. Of course, the installation standards of airport and air navigation facilities are based on the global standard due to the nature of air traffic. However, to prevent the chaos for the safety standards in design, construction, inspection of them and to ensure the aviation safety, the safety standards must be further subdivided in the course of domestic legislation. The criteria for installation of the Air Navigation facilities is regulated most specifically. However, to ensure the safety of the operation for Air Navigation Facilities, performance system proved suitable for the Safety of Air Navigation Facilities must change over from arbitrary restrictions to mandatory restrictions and be applied for foreign producers as well as domestic producers. Of course, negligence of pilots and defective aircraft maintenance lead to a large portion of the aviation accidents. However, I think that air traffic accidents can be reduced if the airport or airport facility is perfect enough to ensure the safety. Therefore, legal and institutional supplement to prioritize the aviation safety from the stage of airport development may be necessary.

  • PDF

QR Code-Based Strength Labeling Techniques for Concrete Life-Cycle Quality Maintenance (콘크리트 생애주기 품질관리를 위한 QR 코드 기반 강도 라벨링 기술)

  • Kim, Tae-Heon;Kim, Dong-Jin;Park, Seung-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.603-608
    • /
    • 2011
  • In recent years, numerous mega-sized and complex civil infrastructures are being constructed all over the world. Therefore, more precise construction and maintenance technologies are required for these complicated construction projects. Especially, exact strength measurement and curing process monitoring of the concrete structures are very crucial to confirm the safety and effectiveness of these complicated structures. In this paper, a new Quick Response (QR) code-based concrete strength labeling technique using embedded self-sensing monitoring system is introduced. It is important to note that the QR code-based concrete labeling technique enables easy access of the databases related to the concrete strength at anytime, anywhere, and any smart PC devices. Finally, by integrating the proposed QR code-based concrete labeling with the concrete strength databases already prepared at a designated web-server, a feasibility of the current system is investigated for a next generation concrete life-cycle quality maintenance.

The Development Strategy of the Future Aviation Weather Service Technologies and Realization of NARAE-Weather (미래 항공기상서비스 기술개발 전략과 NARAE-Weather 실현)

  • Park, Y.M.;Kang, T.G.;Ku, B.J.;Kim, S.I.;Kim, S.C.;Ahn, D.S.;Lee, J.H.;Jung, I.G.;Ryu, J.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.48-60
    • /
    • 2021
  • Following the global air-traffic market growth outlook, urgency of technical development is needed in responding to changes in the international air-traffic management paradigm and to prepare technology securing and spreading strategies, which are consistent with systematic aviation weather service policies and evolution direction. Although air traffic has decreased significantly due to COVID-19, normalcy is expected from 2024, as announced by IATA. According to the future air transportation market outlook and development trends of related technologies, Korea has established and implementing the next-generation air transportation system construction plan(NARAE) to secure international competitiveness and leadership in the future. Therefore, this paper describes the technical, economic background and requirements of numerical model-based aviation weather R&D projects for successful implementation of domestic NARAE plans and providing aviation safety and air traffic service efficiency. Furthermore, we proposed numerical-model-based technology development content, strategies and detailed load-map.

Comparative Study of Fish Detection and Classification Performance Using the YOLOv8-Seg Model (YOLOv8-Seg 모델을 이용한 어류 탐지 및 분류 성능 비교연구)

  • Sang-Yeup Jin;Heung-Bae Choi;Myeong-Soo Han;Hyo-tae Lee;Young-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.147-156
    • /
    • 2024
  • The sustainable management and enhancement of marine resources are becoming increasingly important issues worldwide. This study was conducted in response to these challenges, focusing on the development and performance comparison of fish detection and classification models as part of a deep learning-based technique for assessing the effectiveness of marine resource enhancement projects initiated by the Korea Fisheries Resources Agency. The aim was to select the optimal model by training various sizes of YOLOv8-Seg models on a fish image dataset and comparing each performance metric. The dataset used for model construction consisted of 36,749 images and label files of 12 different species of fish, with data diversity enhanced through the application of augmentation techniques during training. When training and validating five different YOLOv8-Seg models under identical conditions, the medium-sized YOLOv8m-Seg model showed high learning efficiency and excellent detection and classification performance, with the shortest training time of 13 h and 12 min, an of 0.933, and an inference speed of 9.6 ms. Considering the balance between each performance metric, this was deemed the most efficient model for meeting real-time processing requirements. The use of such real-time fish detection and classification models could enable effective surveys of marine resource enhancement projects, suggesting the need for ongoing performance improvements and further research.