• Title/Summary/Keyword: Safety Degrees

Search Result 224, Processing Time 0.027 seconds

Behaviour and design of composite beams subjected to flexure and axial load

  • Kirkland, Brendan;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.615-633
    • /
    • 2015
  • Composite steel-concrete beams are used frequently in situations where axial forces are introduced. Some examples include the use in cable-stayed bridges or inclined members in stadia and bridge approach spans. In these situations, the beam may be subjected to any combination of flexure and axial load. However, modern steel and composite construction codes currently do not address the effects of these combined actions. This study presents an analysis of composite beams subjected to combined loadings. An analytical model is developed based on a cross-sectional analysis method using a strategy of successive iterations. Results derived from the model show an excellent agreement with existing experimental results. A parametric study is conducted to investigate the effect of axial load on the flexural strength of composite beams. The parametric study is then extended to a number of section sizes and employs various degrees of shear connection. Design models are proposed for estimating the flexural strength of an axially loaded member with full and partial shear connection.

Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method (유한요소법을 이용한 평판의 동특성 연구)

  • 태순호;이태연;허문회
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

Fatigue Strength Evaluation of Self-Piercing Riveted Al 5052-H32 Joints under Mixed Mode Loading Conditions (혼합모드상태에서의 Al 5052-H32 셀프 피어싱 리벳 접합부의 피로강도 평가)

  • Kwak, Jin Gu;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In this study, static and fatigue tests on the self-piercing riveted (SPR) joint were conducted using cross-shaped specimens with aluminum alloy (Al-5052) sheets. Mixed mode loading was achieved by changing the loading angles of 0, 45, and 90 degrees using a special fixture to evaluate the static and fatigue strengths of the SPR joints under mixed mode loading conditions. Simulations of the specimens at three loading angles were carried out using the finite element code ABAQUS. The fatigue specimens failed in an interfacial mode where a crack initiated at the upper sheet and propagated along the longitudinal direction and finally fractured Maximum principal stress, von-Mises effective stress failed to correlate the fatigue lifetimes at three loading angles. However, the equivalent stress intensity factor was found to be appropriate to correlate the fatigue lifetimes at three loading angles.

Structural Optimization based on Equivalent Static Load for Structure under Dynamic Load (동하중을 받는 구조물의 등가정하중 기반 구조최적화 연구)

  • Kim, Hyun Gi;Kim, Eui young;Cho, Maenghyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.236-240
    • /
    • 2013
  • Due to difficulty of considering dynamic load in side of a computer resource and computing time, it is common that external load is assumed as ideal static load. However, structural analysis under static load cannot guarantee the safety of structural design. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. And previously reported works to distribute equivalent static load were based on ad hoc methods. However, it is appropriate to take into account the stress constraint for the safety design. Moreover, the improper selection of loading position may results in unreliable structural design. The present study proposes the methodology to optimize an equivalent static which distributed on the primary DOFs, DOFs of the constraint elements, DOF of an external load as positions. In conclusion, the reliability of proposed method is demonstrated through a global optimization.

  • PDF

Theoretical Analysis on Turnover Safety of Train Affected by Wind Pressure (풍압을 받는 철도 차량 전복 안전에 관한 이론 해석)

  • Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.812-817
    • /
    • 2011
  • Rolling stocks are often subjected to the effects of natural cross wind or train wind pressure due to the crossing train. These wind pressure cause the falling-off in running stability and turnover problem. It is sometimes reported that trains are blown over by a gust of wind in overseas. So, many countries enact regulations to secure the safety for wind speed. In this study, we analyzed the difference between the regulation for turnover safety of train which was enacted by Ministry of Land. Transport and Maritime Affairs and that based on the multi-body model. In case of multi-body model, it is assumed that the degrees of freedom for carbody and bogie are assigned an independent values respectively. The results show that the latter approach based on multi-body model can access the safety of turnover and replace the computational method which is accessing with lateral force, derailment coefficient and decrement of wheel load.

  • PDF

A Study on Risk Analysis of Social Disaster (사회재난의 재난위해분석에 관한 연구)

  • Lee, Kwan-Hyoung;Yi, Waon-Ho;Yang, Won-Jik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.15-21
    • /
    • 2016
  • According to the disaster statistics issued by the Ministry of Public Safety and Security, traffic accidents, fire, collapses and others are classified into twenty-three (23) categories. In the past, disasters were mainly caused by the influence of nature, such as typhoon or drought. On the other hand, as society has become city-centered, social disasters' types, frequencies and scales are becoming more diversified and ever-increasing. However, there are no specific criteria and assessment methods that can measure degrees of social disasters-related risks objectively. Therefore, this study targeted traffic accidents, fire and collapses from major social disasters, utilized data that are related to occurrence rate, scale of casualties and scale of property loss in past eight years, and calculated the disaster risk index using the distance (Euclidean distance) between two points on the 3D spatial coordinates, in order to make the objective assessment by social disaster type possible. These results will enable the objective evaluation of risk index of major social disaster to be used as the foundational data when building the national disaster management system.

Research on MEMS for Motion Measurement of Solar Energy Platform at Sea (해상 태양광 부유체의 거동측정을 위한 MEMS 연구)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.328-330
    • /
    • 2018
  • A floating body with a device that converts solar energy into electrical energy is moved by waves. To evaluate the safety of a floating body, measurement and interpretation of the float motion is required, which is generally based on 6 degrees of freedom motion. The 6 degree of freedom motion can be measured using MEMS (Micro-Electro Mechanical System), which features low power, small size and low cost. The key issue is, meanwhile, the low precision of the MEMS. In this study, the safety evaluation technique by analyzing the behavior of floating body using MEMS was examined. As a result of the study, it was found that the marine floating body can be modeled through the inertial measurement platform using the 3-axis accelerometer and the 3-axis gyroscope, and the safety of the float can be evaluated through this model.

  • PDF

A Study on the Development of Rigging and Slinging Course for Seafarers (해상 줄걸이작업교육과정 개발에 대한 연구)

  • LEE, Woo;HAN, Cheol-Ho;WOO, Young-Jin;LEE, Jun-Hyuk;LEE, Chang-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1561-1572
    • /
    • 2016
  • The ability to handle materials from one location to another, whether during transit or at the worksite is vital to all segments of industry. To varying degrees, many personnel in numerous workplaces take part in materials handling. Consequently, some employees are injured. In fact, rigging & slinging is a dangerous work using a crane and sling equipment to carry a cargo and the mishandling of materials is the single largest cause of accidents and injuries in the workplace. The majority of accidents associated with cranes and other lifting appliances are caused by faulty slinging, overloading, unbalanced loads, etc. which result in the load falling or tipping out of control, causing injury to people, damage to plant, machinery and the load. Therefore, recognizing the dangers of the works, there are much technical support including skill training in various institutes to minimize accidents during works on land. Although rigging work at sea is much dangerous than on land work because it needs to take account of the movements of the ships and waves, etc. in addition to land based rigging hazards, it is insufficient in appropriate actions that can improve the safety of the workers at sea. Therefore, this study suggested a rigging and slinging course for seafarers to improve their safety at sea by researching hazards and risk of rigging works and related skill training conducted on land.

Structural Safety Analysis of a Spherical Flight Simulator Designed with a GFRP-Foam Sandwich Composite (GFRP-폼 샌드위치 복합재료로 설계된 구체 비행 시뮬레이터의 구조 안정성 평가)

  • Hong, Chae-Young;Ji, Wooseok
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2019
  • A flight training simulator of a fully spherical configuration is being developed to precisely and quickly control six degrees of freedom (Dof) motions especially with unlimited rotations. The full-scale simulator should be designed with a lightweight material to reduce inertial effects for fast and stable feedback controls while no structural failure is ensured during operations. In this study, a sandwich composite consisting of glass fiber reinforced plastics and a foam core is used to obtain high specific strengths and specific stiffnesses. T-type stainless steel frames are inserted to minimize the deformation of the sphere curvature. Finite element analysis is carried out to evaluate structural safety of the simulator composed of the sandwich sphere and steel frames. The analysis considers the weights of the equipment and trainee and it is assumed to be 200 kg. Gravity acceleration is also considered. The stresses and displacement acting on the simulator are calculated and the safety is assessed under two different situations.

The Development of Thermal Model for Safety Analysis on Electronics in High-Speed Vehicle (고속 비행체 전자 장비의 안전성 예측을 위한 열해석 모델 구축)

  • Lee, Jin Gwan;Lee, Min Jung;Hwang, Su Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.437-446
    • /
    • 2021
  • As flying vehicle's speed is getting faster, the magnitude of aerodynamic heating is getting bigger. High-speed vehicle's exterior skin is heated to hundreds of degrees, and electrical equipments inside the vehicle are heated, simultaneously. Since allowable temperature of electrical equipments is low, they are vulnerable to effect of aerodynamic heating. These days, lots of techniques are applied to estimate temperature of electrical equipments in flight condition, and to make them thermally safe from heating during flight. In this paper, new model building technique for thermal safety analysis is introduced. To understand internal thermal transient characteristic of electrical equipment, simple heating experiment was held. From the result of experiment, we used our new building technique to build thermal analysis model which reflects thermal transient characteristic of original equipment. This model can provide internal temperature differences of electrical equipment and temperature change of specific unit which is thermally most vulnerable part in the equipment. So, engineers are provided much more detailed thermal analysis data for thermal safety of electrical equipment through this technique.