• Title/Summary/Keyword: Safety Assessment Factor

Search Result 530, Processing Time 0.032 seconds

INFLUENCE FACTOR-BASED RISK ASSESSMENT METHODOLOGY FOR CONSTRUCITON

  • Hyunsoo Kim;Hyunsoo Lee;Moonseo Park;Kwang-pyo Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1231-1236
    • /
    • 2009
  • Many work-related risk factors can cause construction site hazards. Therefore, safety management begins with measuring the magnitude of risk involved in a project. This study proposes a methodology for risk assessment of major trades at a particular construction site. To assess risk, this methodology integrates hazard severity and frequency, and their magnitude is calculated based on actual work-site hazards. This methodology also considers the influence factors that affect the frequency of work-related hazards. To select the appropriate influence factors, a two step approach is deployed. First, the predominant factors are identified through a literature review. Second, a selective process filters out the influence factors that are difficult to analyze quantitatively, and these extracted factors are weighted using expert surveys. Finally, the factors are combined and a quantitative risk assessment methodology is proposed.

  • PDF

Assessment of Structural Safety of Buried Water Mains (매설관의 구조적 안전성 평가에 관한 연구)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.151-164
    • /
    • 2007
  • Criteria for rehabilitation priority are discussed to evaluate structural stability of deteriorated water transport and transmission pipes, in this study. For the purposes, safety factor is introduced and estimated by measuring tensile strength and by analyzing stress caused by the internal-external loads working on buried pipe body. Related informations are surveyed and collected under various conditions in the fields by digging out and the structural stability is assessed. In the evaluation results of structural safety, it is shown that steel pipe is more affected by external load than internal load. The average external load is estimated as $53.7kg/cm^2$ and total hoop stress is estimated by $2676.5kg/cm^2$. Also, Poisson effect into longitudinal direction due to internal and external loads is most influential on hoop stress. The calculated safety factors of hoop stress are ranged from 0.7 to 5.2 with average value of 2.1, considering a bending stress to longitudinal direction. The decision of rehabilitation priority by safety factors show that structural safety of CIP sample 1(S1) was assessed at the lowest order with safety factor value, 0.7 and that of DI sample 15(S15) was evaluated as the most stable in structural aspect.

A study on the necessity and validity of NCS based neo-qualification plan qualification item in Occupational Safety and Health Management field (산업안전보건관리 분야의 NCS기반 신(新)자격 설계 자격종목의 필요성과 타당성에 관한 연구)

  • Choi, Seo-Yeon;Yang, Wook;Yoon, Young-Ju;Yi, Shin-jae
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The study conducted questionnaire analysis to 413 industrial safety field employees in order to examine the necessity and validity of industrial safety field's 17th neo-job classification based on National Competency standards(NCS). As a result, 50.1% of industrial safety management field and 43.3% of industrial health management field answered that classification details of occupational safety and health management field are classified by job(duty) performance. Industrial safety management field recognizes that management and engineering section play a significant role in their work, while industrial health management field recognizes worker's health care and work environment management and overall control of work environment assessment to be significant in their work. Furthermore, industrial safety management field recognizes that separating qualification and foundation of 'construction safety manager', 'chemicals(safety and health) manager', '(toxic)risk assessment evaluator or risk factor manager' to be highly significant. The study is meaningful in that it suggests industrial safety field's qualification items practical in industrial sites.

The Study on the Software Safety Maturity Model using CMMI and TMMi (CMMI와 TMMi를 이용한 소프트웨어 Safety 성숙도 모델에 대한 연구)

  • Lee, Seung-Mok;Kim, Young-Gon;An, Kyung-Soo
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.87-98
    • /
    • 2020
  • Recently, IoT, artificial intelligence, cloud, big data, and mobile fields have converged, leading to a new industrial era called the 4th industrial revolution. This 4th industrial revolution has been expanded to all industry area and Software has been taken as important role in this revolution. Thus Software Safety is the huge factor because Software is highly relevant to human safety in accordance with Software expansion. However this Software Safety has been focused on not organization improvement activities but current design/development, In this paper, to solve this issue, Software Safety Maturity level and relevant Process Area is defined. This study is expected to contribute to systematic software safety activities.

Quantified Comparison of Work Characteristics for Musculoskeletal Hazards Assessment of Industrial Workers (생산직 근로자의 근골격계질환 위험성 평가를 위한 작업특성의 수량화 비교)

  • Lim, Hyeon-Kyo;Yun, Jong-Hun;Luo, Meiling
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.131-140
    • /
    • 2012
  • Though there might exist not a few differences between cyclic works and atypical works, many researchers have applied the same assessment techniques that used for repetitive works, which may result introduce bias in their conclusions. This research aimed to verify whether there exist non-negligible work characteristics and/or dissimilarity among works with different work nature and whether one of the most prevalent assessment techniques for assessing ergonomic hazards of musculoskeletal disorders, REBA, can be applied to atypical works. For a general hospital, an automobile repair shop, and two auto-part assembly plants which manufactures quite different parts, a questionnaire survey and field investigation and ergonomic assessment were carried out and analyzed statistically with reference to the 3rd Quantification technique. The results showed that there exist remarkable difference between physical factors in cyclic works and atypical non-cyclic works. As for repetitive work, body posture was significant factors affecting on musculoskeletal disorders while atypical works seemed to have none which implied that the necessity of taking psychosocial factors into account for assessment of hazards. Complain rate in repetitive works was highest shoulder, back, and neck or wrist in sequence. However, there existed no consistent trend in complain rate in atypical works. And, though weight of manufacturing objects was a common factor that can partly explain musculoskeletal complain, time duration was significant in atypical work whereas repeatability and body posture were significant in repetitive works. As being the results, to summarize, it could be said that application of conventional ergonomic assessment techniques regardless of repetitiveness would be fruitless, and that the necessity of a unique methodology focused on atypical non-cyclic works should not be neglected.

Safety Assessment of Reinforced Concrete Members by Expected Total Cost Minimization (총기대비용최소화에 의한 R.C부재의 안전도 평가)

  • 이증빈;손용우;박주원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.152-159
    • /
    • 1994
  • One of the main objectives of the study is to propose a pratical and realistic reliability analysis by ETCM(Expected Total Cost Minimization). This study is intended to propose the safety assesment and capacity rating of existing reinforced concrete members by evaluating the safety evaluation index, that is RF(Rating Factor) from the results of the field test and inspection for 5 reinforced concrete bridges. ETCM method is used for the reliability analysis of the proposed models. The proposed reliability model and method are applied the safety assesment and system factors of reinforced concrete members.

  • PDF

Risk Assessment for Noncarcinogenic Chemical Effects

  • Kodell Ralph L.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.412-415
    • /
    • 1994
  • The fundamental assumption that thresholds exist for noncarcinogenic toxic effects of chemicals is reviewed; this assumption forms the basis for the no-observed-effect level/ safety-factor (NOEL/SF) approach to risk assessment for such effects. The origin and evolution of the NOEL/SF approach are traced, and its limitations are discussed. The recently proposed use of dose-response modeling to estimate a benchmark dose as a replacement for the NOEL is explained. The possibility of expanding dose-response modeling of non carcinogenic effects to include the estimation of assumed thresholds is discussed. A new method for conversion of quantitative toxic responses to a probability scale for risk assessment via dose-response modeling is outlined.

  • PDF

A study on the Stability of Rail way Construction on the Reclaimed Land for Domestic Marine Clay Using the Seismic Analysic (연약지반상 지진하중을 고려한 철도노반의 안정성 검토에 관한 연구)

  • Kim Young-Soo;Kim Moo-Ill
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1071-1076
    • /
    • 2004
  • The purpose. in this study. is to analyze liquefaction potential of Inchon International Airport at the Area Phase ' I ' for Railway Construction of all, seismic response was analyzed using the computer program, Shake91. Four methods proposed by Seed & Idriss. Eurocode, Iwasaki & Tatsuoka. and Ishihara were used for assessment of liquefaction potential and safety factors calculated form these methods are compared. Based on the results of seismic response analysis, the maximum acceleration at the ground surface is larger than that evaluated site factor effect by using site factor because these areas are composed of very loose sand clay. Especially, in the case of analysis with long period earthquake data. it is appeared that the acceleration of earthquake is amplified more largely. Therefore, accurate seismic response analysis is suggested for the design on the important structures on reclaimed land. The analytical results of liquefaction potential show that the increments of N-value and effective overburden pressure with remediation make safety factors increase. Through comparing the safety factors evaluated from four method, the safety factor calculated by See & Idriss method in the lowest one and it is found that the SPT N-value effect the safety factor very largely. And, Iwasaki & Tatsuoka method is affected by various factors such as average grain size. fine contents, confining pressure. In conclusion. to minimize earthquake Risk by liquefaction, the efficient remediation is essential and seismic response analysis should be carride out.

  • PDF

The Assessment of Occupational Injuries of Workers in Pakistan

  • Noman, Muhammad;Mujahid, Nooreen;Fatima, Ambreen
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.452-461
    • /
    • 2021
  • Background: The prevailing global work scenario and deteriorating health facilities in economies indulge the risk perspective in the labor market model. This is the reason that the risk factor is cautiously attributed to wages and labor market efficiencies specifically in developing and emerging economies. In this respect, Occupational Injuries of Workers (OIW) is considered essential to demonstrate the risk and Occupational Health and Safety (OHS) setups given the constraints of the labor. Intuitively, the prime objective of this study is to make an assessment of the labor market considering the OIW through the indicators of industry division, employment status, occupational distribution, adopted treatment, gender and regionality. Methods: The assessment strategy of the study has been categorized into trend analysis and Index Value Calculation (IVC) segments employing the data from 2001 to 2018. Results: The pattern of the selected indicators of the OIW has been observed in the available data while the IVC estimations are considered through time and reference categories. The findings of both exercises revealed absolute and relative heterogeneities at both industry and occupational levels. Conclusion: The consistency for gender and regional distribution of both assessments points out the need for effective policy initiatives. The study suggests separate analyses of industry and occupations for a better understanding of the OHS setups and up-gradation in Pakistan.

Slope Stability Assessment on a Landslide Risk Area in Ulsan During Rainfall (울산 산사태 위험지역의 강우 침투 안정성 평가)

  • Kim, Jinwook;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.27-40
    • /
    • 2016
  • Conventional warning criteria for landslides due to rainfall in broad regions have limitations, because they did not have proper reflection of topography, forest physiognomy, and unsaturated soil properties, et al. This study suggested a new stability model for unsaturated slope analyses during rainfall, considering rainfall pattern, geomorphological characteristics (slope angle, soil depth), engineering properties of unsaturated soils, and tree surcharge and root reinforcement. Stability analysis not considering root reinforcement and tree surcharge tends to over-predict a factor of safety in unsaturated slopes. Developed slope stability model was used to build database on the factor of safety in unsaturated slopes during rainfall, and it was integrated with GIS to do quantitative risk analysis in landslide risk areas specified in Ulju. Landslide risk areas were located at downstream of the point with sudden drop in safety factor, as well as at regions with low safety factor during rainfall.