• Title/Summary/Keyword: Safety Assessment Factor

Search Result 521, Processing Time 0.029 seconds

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

Conformity Assessment of Vertical Static Stiffness Test Method for Rail Pad (레일패드 정적 수직강성 시험방법의 적합성 평가)

  • Bae, Young-Hoon;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2015
  • The vertical static stiffness of rail pads or baseplate pads, which are important components in rail fastening systems for track safety, is a key factor to determine the total track stiffness and a guideline of quality control in the manufacturing process. The vertical static stiffness can be checked by laboratory testing: test methods are EN 13146-9 and KRS TR 0014, which are widely used in the railway field. In this paper, to correct some problems, namely the preloading step, the unloading level, and the holding time in the loading program in the vertical static stiffness test of EN 13146-9 and KRS TR 0014, domestic and foreign test standards of pads were analyzed and then certain schemes for a vertical static stiffness test were proposed. To assess the reliability of the proposed schemes, the vertical static stiffness tests were performed with 4 pads and the validity of the test results was estimated.

Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments (NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구)

  • Kim, Tae won;Moon, Chang Ho;Kim, Young Ryun;Son, Min Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF

Distribution and Pollution Assessment of Trace Metals in the Surface Sediments around Farming Area of Jinhae Bay (진해만 양식어장 주변 표층 퇴적물 중 미량금속의 분포 특성 및 오염 평가)

  • Choi, Tae-Jun;Kwon, Jung-No;Lee, Garam;Hwang, Hyunjin;Kim, Youngsug;Lim, Jae-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.347-360
    • /
    • 2015
  • Trace metals(As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn) concentrations in surface sediments of Jinhae bay in August of 2013 were measured to investigate the characteristics of trace metals distribution and to evaluate the metal pollution. Assessment for metal pollution was carried out using the sediment quality guidelines(SQGs) such as threshold effects level(TEL) and probable effects level(PEL) proposed by the ministry of onceans and fisheries(MOF) in Korea and geochemical assessment techniques(enrichment factor(EF) and geoaccumulation index ($I_{geo}$)). The mean concentration of trace metals in the sediments are as follows: 11.1 mg/kg for As, 0.52 mg/kg for Cd, 14.1 mg/kg for Co, 69.8 mg/kg for Cr, 57.2 mg/kg for Cu, 3.7 % for Fe, 0.064 mg/kg for Hg, 600 mg/kg for Mn, 40.1 mg/kg for Pb, 167.2 mg/kg for Zn. The spatial distributions of As, Co, Cr and Fe were not distinguished clearly in whole area. However, Cd, Hg, Pb and Zn were high in northern area of bay, and Cu and Mn were high in southeastern and eastern area of bay, respectively. The distribution pattern of trace metals, correlation matrix and R-mode factor analyses results revealed that the distribution of trace metals were mainly effected by the sediment grain size(Co, Cr and Fe), redox condition of sediments(Mn) and anthropogenic factors(As, Cd, Cu, Hg, Pb and Zn). Comparing the concentrations of several trace metals(As, Cd, Cr, Hg and Pb) with SQGs from Korea(TEL and PEL), the concentrations of Hg, Cd and Pb in sediment of northern area of bay were higher than TEL. EF and $I_{geo}$ values of As, Cd, Cu, Hg, Mn, Pb and Zn showed that these metals in sediments are enriched by anthropogenic activities in some areas, and pollution status for Cd, Hg and Pb in northern area and Cu in southeastern area of bay were concerned about current level, although those for As, Mn and Zn were not.

Survey of spatial and temporal landslide prediction methods and techniques

  • An, Hyunuk;Kim, Minseok;Lee, Giha;Viet, Tran The
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.507-521
    • /
    • 2016
  • Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.

Fretting-wear Characteristics of Steam Generator Helical Tubes (증기발생기 나선형 전열관의 프레팅 마모 특성)

  • Jong Chull Jo;Woong Sik Kim;Hho Jung Kim;Tae Hyung Kim;Myung Jo Jhung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.327-335
    • /
    • 2004
  • This study investigates the safety assessment of the potential for fretting-wear damages caused by foreign object in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the helical type tubes with various conditions. The wear rate of helical type tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the external pressure on the vibration and fretting-wear characteristics of the tube.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Assessment for Ingredients and Amount of Radiofrequency Electromagnetic Field Exposure for Indoor Environment in an Institution for the Aged of Downtown (도심지역 노인복지시설 실내 환경에 대한 RF 전자파 노출량의 정성.정량 평가에 관한 연구)

  • Choi, Jung-Hun;Kim, Nam;Hong, Seung-Cheol;Kim, Yoon-Shin;Choi, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.268-274
    • /
    • 2006
  • In this study in order to evaluate the growth of RF propagation exposure rate generated according to the enhancement of its use, it is proposed for the ground to be able to examine and to contemplate the correlation between the human health and RF propagation exposure rate by measuring and analyzing the RF exposure source and exposure rate in an indoor environment. As a result of research, it is analyzed that the main exposure source of critically making effect in indoor environment is the frequency hand if radio broadcasting, mobile communication, wireless LAN, digital broadcasting, home appliance, etc., including the TV broadcasting. Among these, it is shown that the TV broadcasting and mobile communication band are the highest. And it is the concluded that RF exposure rate of the environmental sensitive equipment, like an institution for the aged, has lower possibility to exceed the human RF protection criteria by this evaluation.

Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar (철근이 부식된 철근콘크리트 구조물의 건전도 평가기술)

  • Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.